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Abstract

We explore a mechanism by which second moments—such as cross-sectional dispersions, risk, volatility, 
or uncertainty—naturally and endogenously fluctuate over time as nonlinear transformations of fundamen-
tals. Specifically, we provide theoretical results that characterize second moments of transformed random 
variables when the underlying fundamentals are subject to distributional shifts that affect their means, but 
not their variances. We illustrate the usefulness of our results with a series of applications. Our main ap-
plication concerns the cross-sectional dispersions of output, employment, and Solow residuals, which we 
show to become countercyclical if employment and capital are gross complements. The mechanism can ac-
count for a significant share of the empirical cyclicality patterns, without exogenous shocks to volatilities. 
In additional applications we use our theory to study endogenous fluctuations in the dispersion of MRPKs, 
in risk in security pricing, and in uncertainty in Bayesian inference problems.
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1. Introduction

Many important statistics in macroeconomics and finance—such as cross-sectional disper-
sions, risk, volatility, or uncertainty—are second moments. For example, dispersions can be 
measured by the cross-sectional variance, risk by the variance across future states with an objec-
tive probability measure, volatility by the variance of the realized path over time, and uncertainty 
by the variance across unknown states with respect to a possibly subjective probability mea-
sure. The recent financial crisis was a stark reminder that these second moments are nowhere 
near constant over the business cycle and allowing them to vary can help explain the economic 
fluctuations during the crisis.1

In this paper, we explore a mechanism by which second moments can naturally and endoge-
nously fluctuate across states or time, when economically interesting variables are nonlinear
transformations of some fundamental. Specifically, we consider a general setup where there is a 
fundamental shock θ whose realization is either different across economic regions or agents (dis-
persion), not realized yet (risk), varies over time (volatility), or unknown to agents (uncertainty). 
We distinguish between the variance of θ , which defines the second moment of the fundamen-
tal, and the variances of certain nonlinear transformations of θ , which characterize the second 
moments of interest to us.

In standard stochastic business cycle models, for instance, the variables of economic interest 
are commonly approximated as linear (or linearized) functions of the fundamentals. In order to 
use these models to explain movements in second moments of endogenous variables one must 
therefore rely on exogenous shocks to the second moments of fundamentals. Moreover, to cap-
ture the apparent cyclicality of the second moments of these variables, the exogenous shocks to 
second moments need to be correlated with the corresponding first-order shocks to fundamentals. 
Here, we go another route and consider a setting where some variable of interest, y, is a convex 
or concave function of the fundamental θ .2 We provide general theorems that characterize the 
behavior of the variance of y as the distribution of θ shifts up or down, without changing the 
fundamental variance of θ . Our framework hence provides a theoretical underpinning for a class 
of models where a single “first-moment” change in fundamentals causes fluctuations in first and
second moments in endogenous variables.

Applied contribution The usefulness of our results is illustrated in a series of four applica-
tions. The main application is a stylized business cycle model, in which we take θ as the 
productivity of distinct economic units (e.g., firms, plants, or regions). We study how aggre-
gate, variance-preserving shifts of the distribution of θ across these units (i.e., fluctuations in 
aggregate productivity) translate into endogenous fluctuations in the cross-sectional dispersion 
of key macroeconomic quantities, such as output, employment, investment, and Solow residuals. 
The novel feature in this application is the focus on non-unit elasticities between factor inputs at 
the firm level, which is key for generating a non-linear mapping from productivities to economic 
activity. In line with empirical cross-sectional patterns, the dispersions of output, employment 
and Solow residuals are shown to be countercyclical when employment and capital are gross 
complements. A simple calibration of the input elasticity to recent micro-data estimates sug-

1 See, e.g., Christiano et al. (2014), Bloom (2009) and Bloom et al. (2016) for business cycle theories based on risk 
or uncertainty shocks. For empirical evidence regarding the cyclicality of second moments, see, e.g., Bachmann et al. 
(2013), Berger and Vavra (2010), Higson et al. (2002) and Kehrig (2015).

2 Throughout this paper, we follow the convention that “convex” (“concave”) means weakly convex (weakly concave).
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gests that this mechanism can account for a significant share of the empirical observed cyclical 
variation in various dispersion measures—without exogenous “volatility”-shocks.

The second application looks at a prominent proxy used by a recent literature to measure 
misallocation, the marginal revenue product of capital (MRPK), and explores how it changes 
with different shocks. We consider a simple model where firms face idiosyncratic borrowing 
constraints and are hit by idiosyncratic productivity and financial shocks. As expected, financial 
shocks lead to counter-cyclical fluctuations in the cross-sectional dispersion of MRPKs. In con-
trast, we show that productivity-driven fluctuations lead to pro-cyclical dispersions whenever the 
elasticity of borrowing limits to firm revenues is smaller than one.

The third application is a simple security market model where we explore how the comove-
ment of a security’s risk with the underlying fundamental depends on the security’s payoff profile. 
In this context, we generalize the following two well-known results for a general class of under-
lying risk distributions: (i) concavely increasing securities (e.g., corporate debt) have return risk 
that is countercyclical to the underlying state of the corporation; and (ii) convexly decreasing 
securities (e.g., European Put options) have procyclical return risk.

Our final application illustrates how uncertainty in Bayesian inference problems can vary en-
dogenously when signal structures have some degree of “non-linearity”. In particular, we study 
a setup where agents receive a signal about some non-linear transformation g(θ) of the funda-
mental θ . Such non-linear transformation arises, for instance, when agents learn from financially 
constrained firms about their business potential. In this setup, when θ realizes in a range where 
g tends to be rather flat (e.g., firms are constrained), the signal endogenously loses some of its 
information content. This way, posterior uncertainty fluctuates with the realization of the signal 
and is thus determined by both, the fundamental θ and the exogenous noise in the signal itself.

Together, these applications illustrate how our results can be used to provide a unified perspec-
tive to explain endogenous fluctuations in risk, dispersion, and uncertainty. While Application 3 
is fairly standard, Applications 1, 2, and 4 describe new perspectives on recent results in their 
respective literatures. For example, Application 1 contributes to the recent literature on the cycli-
cality of the dispersion of firm- or plant-level statistics.3 In particular, it complements Ilut et al. 
(2016) who develop a model where asymmetries in hiring and firing based on ambiguity aversion 
microfound nonlinear responses of firms to changes in productivities. These nonlinearities play 
a similar role to the nonlinearities emerging in our application from a non-unit elasticity between 
factor inputs in that they introduce cyclical shifts in the dispersions of firm aggregates. Applica-
tion 2 contributes to recent studies on the cyclicality of misallocation of capital (see, e.g., Kehrig 
2015 and Gopinath et al. 2015), in that it discusses—based on a simple static framework with 
heterogeneous borrowing constraints—under what conditions the dispersion of the marginal rev-
enue product of capital can be expected to be cyclical. Finally, Application 4 introduces a general 
result about the cyclicality of Bayesian uncertainty when signals are nonlinear functions of the 
economy’s fundamental. Theories about the cyclicality of uncertainty have recently gained atten-
tion by a number of authors in the face of growing evidence and potential relevance of changes in 
uncertainty (see, e.g., van Nieuwerburgh and Veldkamp 2006; Orlik and Veldkamp 2014; Straub 
and Ulbricht 2012, 2014; Fajgelbaum et al. 2017).

3 The cyclicality of the dispersions of firm- or plant-level variables such as output, productivity, employment, or invest-
ment is documented by Bachmann et al. (2013), Bachmann and Bayer (2013, 2014), Berger and Vavra (2010), Bloom 
et al. (2016), Cui (2014), Döpke et al. (2005), Döpke and Weber (2010), Gourio (2008), Higson et al. (2002, 2004) and 
Kehrig (2015) among others.
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Theoretical contribution To be as broadly applicable as possible, the theory part of our paper is 
kept in a general and abstract form: Letting X and Y be real-valued random variables with equal 
variance, we compare the variances of g(X) and g(Y ), where g is a monotone and convex or 
concave function.

Our results are easiest seen in the special cases where Y is either strictly larger than X—by 
which we mean the support of Y strictly exceeds the support of X without overlap—or when 
the distribution of Y is simply a positive translation of the distribution of X. Then as one would 
expect, the variance of g(Y ) (weakly) exceeds the variance of g(X) if g is convexly increasing or 
concavely decreasing. However, these cases are quite special and may not translate well to real 
world examples.4

A natural question hence is whether and when these results carry over to the general case 
where the supports of X and Y are allowed to overlap and where the distributions do not have 
the same parametric shape. As it turns out, the answer is less straightforward than one may think. 
For instance, it is possible to construct examples where Y first-order stochastically dominates 
X—that is, the cumulative distribution function of Y is strictly below the one of X—yet the 
variance of g(Y ) is smaller than the one of g(X), despite g being an increasing convex function 
(and X and Y having equal variance).

The main theoretical result in the paper states that when Y dominates X according to the 
monotone likelihood ratio property (MLRP)—that is, the ratio of the densities of Y and X is 
increasing—but shares the same variance as X, then the variance of g(Y ) indeed exceeds the 
variance of g(X) if g is convexly increasing or concavely decreasing.5 This gives us a precise 
notion of when positive shifts in an underlying fundamental, say θ , translate into positive shifts 
to the second moment of a transformed variable g(θ), namely when g is convexly increasing or 
concavely decreasing.

In addition to the non-parametric characterization in our main result, we provide a simple 
elementary proof for the above mentioned case where Y is a translation of X. Building on this 
proof, we further extend our results to the case where X and Y are not necessarily similar in 
shape yet their transformations g(X) and g(Y ) are linked via an affine-linear relation6 with 
Eg(Y ) > Eg(X).

It is worth noting here that our results have nothing in common with Jensen’s inequality.7

Instead, the correct analogy is to the known transformation properties of first moments. Specifi-
cally, it is well-known that two random variables ordered by MLRP have means ordered the same 
way, and this property is preserved under increasing transformations. In analogy to these known 
results on first moments, our results imply that for two MLRP-ordered random variables, the 
order of variances is preserved under increasing convex and decreasing concave transformations

4 For instance, we expect that a positive shock to the aggregate productivity of an economy would typically not leave 
the exact shape of the productivity distribution unchanged, but may disproportionately affect firms at certain points of 
the productivity distribution. Similarly, the cross-sectional productivity distribution is very likely to always have some 
overlap.

5 Analogously, it holds that the variance of g(X) exceeds the one of g(Y ) when g is concavely increasing or convexly 
decreasing.

6 That is, g(Y ) = α1 + α2g(X) for real numbers α1, α2.
7 Jensen’s inequality states that under a convex transformation, the mean of g(X) exceeds g applied to the mean of X, 
Eg(X) > g(EX). Apart from pertaining to variances, our results also differ in that they compare statistical measures of 
a transformed variable, g(X), to the same statistical measures of another transformed variable, g(Y ). Jensen’s inequality 
compares statistical measures of a transformed variable, g(X) to the transformation of the statistical measures of the 
untransformed variable, X.
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In relation to the literature, these results substantially extend existing theoretical results on 
the transformation behavior of variances under monotone concave or convex transformations. To 
the best of our knowledge, the most general predecessor of our results is found in Bartoszewicz 
(1985). In the above notation, Bartoszewicz (1985, Theorem 1) proves that if Y dominates X
according to first order stochastic dominance (FOSD) and a convex stochastic order (Van Zwet, 
1964),8 then a similar result to ours holds, namely that Varg(Y ) > Varg(X) for any convexly 
increasing function g. Compared to Bartoszewicz (1985), our main result has the advantage that 
our stochastic orders (MLRP and VarX ≤ VarY ) are in most applications easy to check while it 
can be hard to work with the convex stochastic order in Bartoszewicz (1985), especially in cases 
where Y is of a different parametric shape than X (i.e., Y is not a simple translation of X).

Layout The layout of this paper is as follows: In Section 2 we first introduce the necessary 
mathematical setup and then show how it can be used to prove our theoretical results. Section 3
develops the main application on cross-sectional dispersions. Section 4 contains the remainder 
applications. Section 5 concludes. All proofs are contained in Appendix A, Appendix B, and 
Appendix C.

2. Variance transformation theorems

In this section, we present our formal results. Readers mainly interested in our applications 
may find it useful to study Fig. 1, which summarizes the theoretical mechanism, and then skip 
ahead to Section 3. We start out by explaining our main result in Section 2.1, based on an MLRP 
stochastic order. Then, in the subsequent Section 2.2, we explore two alternative stochastic orders 
and the variance transformation results they imply. In Section 2.3 we present two corollaries 
to our results. Section 2.4 presents simple parametric examples and discusses how they fit the 
assumptions of our theorems.

Consider the following set-up. Let X, Y be two real-valued and univariate random variables, 
defined over a probability space (�, A, P ). Denote by FX and FY their cumulative distribution 
functions. Assume that there exists a measure μ over (R, B(R)) with respect to which the dis-
tributions of X and Y admit density functions fX and fY . Here, B(R) denotes the Borel sigma 
algebra.

The idea behind our results is to ask what order we can expect between Var{g(X)} and 
Var{g(Y )}, depending on the function g. To answer this question in a meaningful way, the 
assumptions we make on the stochastic order between X and Y naturally have to involve the 
second or higher moments of X and Y themselves. For example, even if we were to assume that 
Y lies strictly above X without overlap in their respective supports, there is no way of ranking 
Var{g(X)} and Var{g(Y )} without any information on the variances of X and Y (or other mea-
sures of dispersion). For this reason, all of our stochastic orders will assume a weak ordering of 
the variances of X and Y .9

8 The convex stochastic order that is meant here requires that F−1
X

◦ FY be convex (well-defined if FX is indeed 
invertible). Notice that this is different from the MLRP.

9 It is worth pointing out here that the lack of basic first or second order dominance among our stochastic orders is 
coming from the fact that neither provide the right restrictions on X and Y to be able to rank Var{g(X)} and Var{g(Y )}
for simple functions g (see Example 1 below).
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2.1. Main result: variance transformation under MLRP

For our main result, we assume that X and Y are stochastically ordered in the following sense.

Assumption 1. (i) X is strictly dominated by Y in the sense of the MLRP; that is, fY (z)/fX(z)

is weakly increasing for all z in the support of μ, and FX �= FY . (ii) The variance of X is less 
than or equal to the variance of Y , that is, Var{X} ≤ Var{Y }, and both variances are finite and 
nonzero.

In part (i) of Assumption 1 we demand that X and Y are ordered by MLRP.10 To stress the im-
portance of MLRP, in Example 1 below we show that our results do not carry over to cases where 
the random variables only obey a weaker form of stochastic order, e.g., first-order or second-order 
stochastic dominance. In part (ii) of Assumption 1, we require the variances to be ordered. As 
our results below will apply for increasing convex (and similarly decreasing concave) transfor-
mations, this is the direction of the inequality we need. If Var{X} > Var{Y }, it is straightforward 
to construct counterexamples where the results do not hold. However, in that case, an analogous 
theorem applies for increasing concave (and decreasing convex) transformations.

Our notation is general enough to nest both continuous and discrete random variables. If 
μ is equal to the Lebesgue measure on (R, B(R)), fY and fX are common density functions 
of continuous distributions over R. For example, when X and Y are normally distributed with 
equal variance, X ∼N (mX, σ 2) and Y ∼N (mY , σ 2) with mY > mX , they satisfy Assumption 1. 
Choosing μ to have discrete support allows X and Y to be discrete. For example, a measure11

μ = ∑N
i=1

1
N

δzi
puts equal weight on numbers {z1, . . . , zN } (assumed to be in strictly increasing 

order), in which case Assumption 1(i) demands that fY (zi)/fX(zi) = P {Y = zi}/P {X = zi} be 
weakly increasing in i. In this discrete setup, standard formulae for the variances of discrete 
distributions can be used to impose Assumption 1(ii).12

Main result We now present our main transformation result for variances. The idea behind it is 
as follows. For two random variables X and Y which are stochastically ordered, we show that 
under strictly convex increasing transformations g : R → R,13

Var{X} ≤ Var{Y } ⇒ Var{g(X)} < Var{g(Y )}.
Fig. 1 gives the straightforward intuition behind this result. Y exceeds X stochastically and there-
fore Y most likely realizes in regions where the slope of g is larger than for most realizations 
of X. This follows from the assumption that g be convex and increasing. With “on average” 
higher slope for Y , even if Y and X share the same variance, g(Y ) will have a larger variance 
than g(X).

When X and Y are ordered according to the MLRP, we find the following result.

10 An alternative common characterization of the MLRP is that FY ◦ F−1
X

is (weakly) convex.
11 Here, δz denotes a Dirac measure which puts point mass 1 on z ∈R.
12 Note that our definition of MLRP is well-defined, in the sense that it is independent of which measure μ one takes 
to construct the densities, as long as the distributions of X and Y are both absolutely continuous with respect to μ. For 
instance, in the above discrete example, introducing different weights on the numbers in the support {0, 1, 2}, merely 
causes proportional shifts in the densities, such that their ratios, fX(z)/fY (z), do not change.
13 Throughout this paper, we use the term “strictly convex” to describe an a.e. differentiable function whose derivative 
is a.e. strictly increasing. (Here, “a.e.” is with respect to the Lebesgue measure.)
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Fig. 1. Convex transformation of a translation.

Theorem 1. Suppose Assumption 1 holds. Let g : R → R be a convex and strictly increasing 
function. Then,

Var{g(X)} ≤ Var{g(Y )}, (1)

when these variances are finite. This holds with strict inequality if g is strictly convex.

To illustrate Theorem 1 consider the following example. If the support of X is strictly domi-
nated by the support of Y (no overlap) and there is some point z ∈ R in the gap between the two 
supports, then it is straightforward to show that14

Var{g(Y )} ≥ (
g′(z)

)2 Var{Y } ≥ (
g′(z)

)2 Var{X} ≥ Var{g(X)}. (2)

The intuition behind the example is that the slope of g (which multiplies the variance) is greater 
for all possible realizations of Y than it is for the realizations of X. Cleary, this example is very 
sensitive to the assumption of non-overlapping supports. Still, one might wonder, why our proof 
of Theorem 1 is substantially more subtle than (2). The key to see why lies in understanding 
that the case where the supports of X and Y do overlap requires some notion of the slope of 
g being “on average” greater for realizations of Y than for realizations of X. Because Y is not 
necessarily larger than X for any possible realization—only stochastically so—we need to make 
sure Y dominates X in the “right” way. The following example illustrates this point, showing 
that Theorem 1 in fact fails if we relax the assumption that Y dominates X in the sense of MLRP, 
to the weaker notions of first and second order stochastic dominance.

14 For this example, we tacitly assume that g is differentiable at z.
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Example 1. Let μ = δ0 + δ1 + δ2, where δx is the Dirac measure with a point mass at x, and 
let X, Y be given by fX(0) = 1 − ε, fX(1) = 0, fX(2) = ε and fY (0) = (1 − ε)/2, fY (1) =
(1 − ε)/2, fY (2) = ε. Clearly, Y dominates X in the sense of both First and Second Order 
Stochastic Dominance (FOSD and SOSD). Assume ε = 0.1. Then, the variances of X and Y are 
given by Var{X} = 0.36 and Var{Y } = 0.4275. In particular, Var{Y } ≥ Var{X}.

Now define the convex function g(x) = max{x, λ(x − 1) + 1} with λ > 1. We can compute 
that

Var{g(Y )} − Var{g(X)} = 0.1575 − 0.09λ.

This shows that for sufficiently large values for λ, the variance of g(X) will actually exceed the 
one of g(Y ).

Example 1 considers the case where Y does not dominate X in the sense of MLRP, but rather 
in the weaker senses of both FOSD and SOSD. In that case, Theorem 1 is shown to not neces-
sarily hold.

This example is more general: Suppose X and Y are discrete and Y has a greater mean, 
EX <EY . Suppose further that both have the same right tail, that is, fX(z) = fY (z) for all z ≥ z

where z is in the support of either X or Y , and z > EY . In that case, applying a convex kink 
function g(x) = max{x, λ(x − z) + 1} like before with sufficiently large λ will ultimately lead 
Var{g(X)} to be greater than Var{g(Y )}. This shows that it is not enough that the distribution of Y
lies “to the right” of that of X over a subset of the support (e.g., below z); in fact, what is needed 
is that Y is larger than X over the entire support. This is what is satisfied if Y MLRP-dominates 
X but not if Y merely dominates X in the sense of FOSD.

We now outline the main steps in the proof of Theorem 1. The actual proof can be found in 
Appendix A. For the proof, we derive the variance inequality (1) from two covariance inequali-
ties:

Cov(X,X) ≤ Cov(Y,Y ) ⇒ Cov(g(X),X) ≤ Cov(g(Y ),Y )

⇒ Cov(g(X), g(X)) ≤ Cov(g(Y ), g(Y )). (3)

Both steps are similar: Only one argument in the covariances changes at a time, while the fixed 
ones, e.g., X and Y in the first step, share an MLRP relationship.15 To see why these steps 
hold specifically when Y MLRP-dominates X, consider the first one as an example, with X, Y
continuous random variables. Denoting by mX and mY the means of X and Y , we can write

Cov(g(Y ),Y )−Cov(g(X),X) =
∫
R

g(x)(x −mY )fY (x)dx −
∫
R

g(x)(x −mX)fX(x)dx.

The right hand side of this can be captured with a single integral and integrated by parts,∫
R

g(x)

(
(x − mY )

fY (x)

fX(x)
− (x − mX)

)
fX(x)dx

= −
∫
R

g′(x)

x∫
−∞

(
(z − mY )

fY (z)

fX(z)
− (z − mX)

)
fX(z)dz dx.

15 In the actual proof, we utilize this commonality and prove an auxiliary result that applies to both steps.
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Interestingly, the first factor of the integrand of the interior integral (z − mY )
fY (z)
fX(z)

− (z − mX)

is first positive, then negative, then positive, precisely because mY > mX and fY (z)/fX(z) in-
creases in z due to the MLRP. This means the entire interior integral—which approaches zero 
for both x → −∞ and x → ∞—can only cross 0 at a given x0 ∈ R. Convexity of g means g′ is 
monotone and therefore this expression is bounded below by

−g′(x0)

∫
R

x∫
−∞

(
(z − mY )

fY (z)

fX(z)
− (z − mX)

)
fX(z)dz dx,

which, following the exact same steps backwards, is equal to g′(x0) (Cov(Y,Y ) − Cov(X,X))

and thus greater or equal to zero.

2.2. Two alternative stochastic orders

We now allow for two alternative stochastic orders and prove corresponding variance trans-
formation theorems. Here, our first result, Theorem 2, formally establishes a commonly used 
alternative to our main result; our second result, Theorem 3, establishes a natural extension of it.

As our first alternative stochastic order, we consider the commonly used case where Y is an 
affine linear function of X. In this case, the assumptions on X and Y are as follows.

Assumption 2. (i) Y is an affine-linear function of X, Y = α1X + α2, where EY > EX and 
α1, α2 ∈ R. (ii) The variance of X is less than or equal to the variance of Y , that is, Var{X} ≤
Var{Y }, and both variances are finite and nonzero.

The first part of Assumption 2 demands Y to be an affine linear function of X, but with a higher 
mean so as to ensure that Y is larger than X on average. The case where Y is a simple positive 
translation of X, i.e., α1 = 1 and α2 > 0, is naturally covered. In fact, notice that Assumption 2(ii) 
is also satisfied for this case, since under a translation, Var{Y } = Var{X}. Assumption 2(ii) is 
slightly more general than that by allowing for Y to have a larger variance than X.

As our second alternative order, we consider a variation of Assumption 2, where the affine-
linear transformation assumption is not imposed on X and Y itself; but rather after applying the 
transformation g : R → R to X and Y , under which one is interested in studying the variance 
transformation behavior.

Assumption 3. (i) g(Y ) is an affine-linear function of g(X), that is, g(Y ) = α1 + α2g(X), with 
E{g(Y )} > E{g(X)} and α1, α2 ∈ R. (ii) The variance of X is less or equal to the variance of Y ; 
that is, Var{X} ≤ Var{Y }, and both variances are finite and nonzero.

The essential part of Assumption 3 is again part (i). It requires that g(Y ) and g(X) be similar 
in shape, in the sense that g(Y ) is merely an affine-linear transformation of g(X).

Results under the two alternative stochastic orders We now prove that a similar result to The-
orem 1 holds under our two alternative stochastic orders. We start with the case where Y is a 
simple positive affine-linear translation of X.

Theorem 2. Suppose Assumption 2 holds. Let g : R → R be a convex and strictly increasing 
function. Then,
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Var{g(X)} ≤ Var{g(Y )}, (4)

when these variances are finite. This holds with strict inequality if g is strictly convex.

The idea behind Theorem 2 is simple: Since g is convex, translating a distribution X to the 
right increases the “average slope” g has over the support of the distribution. This increases 
the variance. Clearly, when Y is not only a translation of X, but also wider, that is, α1 > 1
in Assumption 2, this can only increase the variance of g(Y ) compared to the one of g(X). 
The formal proof of Theorem 2, which is relegated to Appendix B, proceeds along these lines 
and studies the function Gg,X(β1, β2) ≡ Var{g(β1 + β2X)} − Var{g(X)}, formally defined in 
Appendix B. The subscripts g and X of Gg,X emphasize the dependance on g and X. Notice 
that by construction, Gg,X(0, 1) = 0 and Gg,X(α1, α2) = Var{g(Y )} − Var{g(X)}. Since Gg,X is 
shown to increase as we vary (β1, β2) from (0, 1) to (α1, α2), (4) follows.

Finally, we consider the case where g(X) and g(Y ) are ordered in an affine-linear way. The 
same conclusion holds there.

Theorem 3. Suppose Assumption 3 holds, with g :R → R a convex, strictly increasing function. 
Then,

Var{g(X)} ≤ Var{g(Y )}, (5)

with strict inequality if g is strictly convex.

Theorem 3 is a simple variation of Theorem 2. Rather than parametrically linking the distri-
butions of X and Y , it does so for g(X) and g(Y ). Hence, it is suitable for applications where it 
is not X and Y that stem from a “similar” parametric class of distributions (e.g., normal distribu-
tions) but rather g(X) and g(Y ). Example 2 illustrates this.

Example 2. Let X, Y be such that g(X) ∼ N (μg(X), σ 2
g(X)) and g(Y ) ∼ N (μg(Y ), σ 2

g(Y )), with 
μg(X) < μg(Y ). The question Theorem 3 asks is what we can say about the relationship between 
σ 2

g(Y ) and σ 2
g(X) if we know that Var{X} ≤ Var{Y }. The answer is that σ 2

g(X) < σ 2
g(Y ) for strictly 

convex g.

Similar to the proof of Theorem 2, the idea for the proof of Theorem 3 is to study the properties 
of the function Gg−1,g(X)(β1, β2) = Var{g−1(β1 + β2g(X))} − Var{X}. Again, G(0, 1) = 0, but 
now it also holds by assumption that G(α1, α2) ≥ 0. To prove (5) it needs to be shown that 
α2 > 1, which follows by proving that G(α1, α2) can only be larger than G(0, 1) if the second 
argument increased. The formal proof is in Appendix C.

2.3. Corollaries

All three results, Theorems 1, 2, and 3, have a common straightforward corollary.

Corollary 1. Suppose either Assumption 1(i), Assumption 2(i), or Assumption 3(i) holds.

1. If Var{X} ≤ Var{Y } and g : R → R is a concave, decreasing function, then Var{g(X)} ≤
Var{g(Y )}.

2. If Var{X} ≥ Var{Y } and g : R → R is a concave, increasing function, then Var{g(X)} ≥
Var{g(Y )}.
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3. If Var{X} ≥ Var{Y } and g : R → R is a convex, decreasing function, then Var{g(X)} ≥
Var{g(Y )}.

Here, all variances are assumed to be finite. The respective second inequalities hold strictly if g
is strictly convex or concave.

These generalizations are simple consequences of Theorems 1, 2, and 3 that can be obtained 
by changing the signs of X and Y , or changing the sign of g, or both.

It is also worth noting that our results can also be combined in a straightforward manner. For 
example, Theorems 1 and 2 jointly imply the following corollary.

Corollary 2. Suppose that (i) Y is an affine-linear function of a random variable Ỹ , which 
MLRP-dominates X; (ii) EY > EỸ ; and (iii) Var{Ỹ } ≥ Var{Y } ≥ Var{X}. Then,

Var{g(X)} ≤ Var{g(Ỹ )}.

This corollary is one of the most general results on the behavior of variances under nonlinear 
transformations. It includes the standard case where Y is a positive affine-linear shift of X, but 
frees Y from the necessity of having exactly the same (shifted) shape as X.

2.4. Simple examples

Each of the three theorems has its own set of examples. Here, we go over three examples 
that illustrate when which of the theorems can be applied. The examples show that Theorem 1 is 
applicable in a wide range of settings since it does not require a highly special linear relationship 
between X, Y or g(X), g(Y ).

Example 3. Suppose X, Y are normal distributions with equal variance and ordered means, 
EY > EX. In that case, Theorems 1 and 2 apply for any convex or concave, monotone func-
tion g.

Example 4. Suppose X, Y are log-normal distributions with equal variance and ordered means, 
EY > EX. In that case, Theorem 1 applies for any convex or concave, monotone function g. 
Theorem 3 applies only if g is equal to log (up to scale and a constant intercept).

Example 5. Suppose X, Y are Pareto distributions with equal scale parameter or exponential dis-
tributions. Denote by ξX, ξY their respective tail parameters. If ξX > ξY > 0, that is Y has a fatter 
tail than X, then Y MLRP-dominates X and Var(Y ) > Var(X). Again, we can use Theorem 1 to 
rank the variances of any convex or concave, monotone function g.

For what kind of distributions does Theorem 1 not apply? Whenever X and Y have bimodel 
distributions, but are linearly related as in Assumption 2 or Assumption 3, Theorem 1 does gen-
erally not apply even though the variances of g(X) and g(Y ) are still ordered (Theorem 2 or 
Theorem 3).
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3. Main application: cross-sectional dispersion over the business cycle

Recently, the cyclicality of the dispersions of macroeconomic variables has gained a re-
newed interest. For example, the dispersions of plant- and firm-level output, employment growth 
and Solow residuals have been shown to be countercyclical, while investment dispersion is 
procyclical.16 Here we link these facts to simple shifts in the distribution of idiosyncratic pro-
ductivities after applying one of Theorems 1–3. The key element is a CES firm-level production 
function with an elasticity of capital-labor substitution different from one, which generates a 
non-linear mapping from firm-level productivities to production. We consider first a stylized, 
partial-equilibrium model that allows for analytical results. In the subsequent section, we enrich 
the model and use it to explore the quantitative implications.

3.1. Partial equilibrium framework

Assume there is a continuum of firms, labeled by i ∈ [0, 1], with CES production technology

yit = eait f (kit , nit ), (6)

where f (k, n) = (
αk(σ−1)/σ + (1 − α)n(σ−1)/σ

)σ/(σ−1)
. Here, ait is the realization of a firm-

specific (log) productivity shock; kit and nit are firm i’s choices for capital and labor, taken 
as given the paths for interest rates {rt } and wages {Wt }; σ > 0 is the (firm-level) elasticity of 
substitution between capital and labor; and α ∈ (0, 1). The investment to capital ratio, or “in-
vestment rate”, ιit is chosen at t and the law of motion of capital is kit = (1 + ιit−1 − δ)kit−1, 
with depreciation rate δ > 0. To allow for an analytical characterization, we assume (for now) 
that interest rates and wages are exogenous at constant levels, rt = r > 0 and Wt = W > 0, and 
that the distribution of productivities ait is independent of ait−1 and drawn from a time-varying 
distribution Ft .

The optimization problem of firm i in period τ is thus

viτ ≡ max{nit ,kit+1}
Eτ

∞∑
t=τ

Qt

Qτ

πit , (7)

where profits are given by

πit = yit − Wnit + (1 − δ)kit − kit+1 (8)

with discount factor Qt ≡ (1 + r)−t and yit as in (6). Since labor is perfectly flexible, and the 
distribution of ait is the same across i, the capital stock is the same across i; that is, kit = kt > 0
for some {kt }. The first order condition for labor is then,

fn(1, nit /kt ) = e−ait W. (9)

Notice that for σ < 1, the left-hand side is bounded above by (1 − α)σ/(σ−1) so that firms with a 
productivity smaller than ait ≤ − σ

σ−1 log(1 −α) + logW set nit = 0 resulting in zero production. 

16 See, e.g., Bachmann et al. (2013), Bachmann and Bayer (2013, 2014), Berger and Vavra (2010), Bloom et al. (2016), 
Cui (2014), Döpke et al. (2005), Döpke and Weber (2010), Gourio (2008), Higson et al. (2002, 2004) and Kehrig (2015)
among others.
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In the following, we assume that these firms exit the market, focusing our analysis on active 
firms.17 Solving for nit and taking logs, (9) becomes

lognit = logkt + g(ait − w) (10)

with w ≡ logW and g(x) = log
(
fn(1, ·)−1(e−x)

)
.18 It is easy to verify that g is an increasing 

function and is strictly concave (strictly convex) whenever σ < 1 (σ > 1).
Consider the following experiment akin to an aggregate TFP shock: Suppose the distribution 

of log productivities (among active firms) shifts from Ft to a distribution F t ′ at time t ′, which 
dominates Ft according to either of Assumptions 1–3(i), but has equal dispersion: VarFt

{ait } =
VarFt ′ {ait ′ }. Applying our corollary of Theorems 1–3 to (10) we have the following proposition.

Proposition 1. In the partial-equilibrium firm-dynamics model, when the cross-sectional distri-
bution of log productivities Ft increases to a distribution Ft ′ (with equal dispersion) such that 
one of Assumptions 1–3(i) holds for Ft and Ft ′ , then the cross-sectional dispersions of log em-
ployment and log output decrease if σ < 1 and increase if σ > 1.

This proposition shows that in our simple model, the cyclicality of the dispersions of log out-
put and log employment is entirely driven by the elasticity of substitution between labor and 
capital. The intuition behind this result is as follows. Suppose σ < 1. In that case, the capital 
and labor are complementary. Thus, since capital is fixed in the short run, labor adjusts relatively 
more to changes in productivity when it is scarce compared to when it is abundant. The limit 
case of a Leontief production technology is especially stark: There, labor is infinitely elastic to 
productivity when it is scarce, and entirely inelastic when it is abundant. This means the elas-
ticity of labor to productivity declines with rising productivity (or declining wages), or in other 
words, lognit is increasing and concave in logait . This then implies that when log productivi-
ties experience an upward shift as specified in Proposition 1, the cross-sectional variance of log 
employment must fall. The opposite logic applies when σ > 1.

Proposition 1 makes two statements, one about the cyclicality of the dispersion in log employ-
ment and one about the cyclicality of the dispersion in log output. To prove the latter, note that 
(9) can be rearranged to

yit =
(

W

1 − α

)σ

e(1−σ)ait nit . (11)

Observe that, given the definition of g(x), x �→ (1 − σ)x + g(x) is also an increasing function 
that is strictly concave (strictly convex) whenever σ < 1 (σ > 1). Therefore the cyclicality of the 
dispersion of log output is equal to the one of log employment.

What would an observer find for the behavior of the dispersion of log productivities them-
selves under a shift from Ft to Ft ′? Clearly, if the observer knew the true production function 
and firm-level employment and capital stocks, he could recover the true shift in the productivity 
distribution and find that this dispersion did not change. If, however, the observer were to com-
pute a standard Solow residual—as commonly done in the literature—based on a Cobb-Douglas 
production function with an empirical capital share of β ∈ (0, 1) he would find

aSolow
i = logyit − β logkt − (1 − β) lognit .

17 This could be for instance the result of a marginal operating cost ε → 0 that accrues when remaining active.
18 Here, fn(1, ·)−1 is shorthand for the inverse of the function x �→ fn(1, x).
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This can be simplified to

aSolow
i = σ logwt + (1 − σ)ait − σ log(1 − α) − β logkt + β lognit ,

which proves the following result.

Proposition 2. In the partial-equilibrium firm-dynamics model, when the cross-sectional distri-
bution of log productivities Ft increases to a distribution Ft ′ (with equal dispersion) such that 
one of Assumptions 1–3(i) holds for Ft and Ft ′ , the cross-sectional dispersion of Solow residuals 
decreases if σ < 1.

Propositions 1 and 2 show that when σ < 1, our model exhibits the empirically correct cycli-
calities of the dispersions of log employment, log output and the Solow residuals. Several recent 
papers suggest that labor and capital inputs are indeed complements, with estimated firm-level
elasticities ranging from 0.25 to 0.53 (Chirinko et al., 1999, 2011; Raval, 2015; see below for 
details). This motivates a more serious quantitative exploration, which is what we do in the next 
section.

3.2. Quantitative exploration

We now explore the quantitative potential of the mechanism, embedding it into a general 
equilibrium model and allowing for persistence of ait at the firm-level.

Model The model is a version of the one presented in the previous subsection, with the fol-
lowing modifications. First, firms’ log productivities are given as the sum of an aggregate and a 
firm-specific TFP component, ait = zt + εit . Both components are modeled as AR(1) processes, 
zt = ρzzt−1 + et and εit = ρεεit−1 +uit with persistence parameters ρz, ρε ∈ (0, 1). The innova-
tions {et , uit } are mutually independent iid shocks. Denote by Gε the stationary distribution of 
{εit } and by Gu the distribution of uit . Second, we now assume that firms’ production functions 
have decreasing returns to scale,

yit = eait f (kit , nit )
ν, (12)

where ν ∈ (0, 1). This ensures that the distribution of capital does not become degenerate with a 
positive persistence ρε . Finally, we assume that labor Nt is supplied and state-dependent assets 
are traded by a representative household with preferences

E0

∞∑
t=0

βt

(
logCt − θ

1

1 + ζ
N

1+ζ
t

)
(13)

and budget constraint

Ct +Et

(
Qt+1

Qt

Vt+1

)
≤ WtNt + Vt +

∫
πit di, (14)

where Vt is a random variable chosen by the agent, measurable with respect to aggregate infor-
mation at time t . Vt captures the wealth, i.e., the number of Arrow-Debreu securities, the agent 
saves for a given state at time t . Capital does not enter the household’s budget constraint directly 
as it is accumulated within firms.
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Definition of equilibrium Given exogenous productivity shocks {zt , εit }, an equilibrium in this 
economy consists of stochastic processes of aggregate quantities {Ct, Kt+1, Nt, Vt }, firm-specific 
quantities {yit , kit , nit , πit , viτ }, prices {Qt, Wt }, such that (a) each firm i solves (7) with pro-
duction function (12), (b) the representative household maximizes (13) subject to (14), (c) firm 
i’s profits are given by (8), aggregate capital is defined as Kt ≡ ∫ 1

0 kit di, and (d) markets clear, 

that is, Yt = Ct + ∫ 1
0 ιit kit di, Nt = ∫ 1

0 nit di, and Vt = ∫ 1
0 vit di.

Analytical simplification Despite the large number of firms in the model and the presence of 
idiosyncratic productivity shocks, the equilibrium is still efficient and equivalent to the outcome 
of a planning problem with only aggregate state variables. We formalize this in the following 
lemma.

Lemma 1. There is an equilibrium with aggregate quantities {Ct, Kt+1, Nt } if and only if they 
solve

max{Ct ,Kt+1,Nt }
E0

∞∑
t=0

βt

(
logCt − θ

1

1 + ζ
N

1+ζ
t

)
(15)

Ct + Kt+1 ≤ ezt F (Kt ,Nt ) + (1 − δ)Kt

where the aggregate production function F is defined as

F(K,N) ≡ max
k(ε̃),n(ε̃,ũ)

∫∫
eρε̃+ũf (k(ε̃), n(ε̃, ũ))ν dGε(ε̃)dGu(ũ) (16)

s.t.
∫

k(ε̃)dGε(ε̃) = K,

∫∫
n(ε̃, ũ)dGε(ε̃)dGu(ũ) = N.

Lemma 1 simplifies the solution of the aggregate economy to that of a standard real business 
cycle (RBC) model. The key intuition behind the lemma is that in the absence of capital adjust-
ment costs at the firm-level, the distribution of next period capital stocks kit+1 is independent of 
the distribution of existing capital stocks kit . Thus, the allocation of next period capital stocks 
is entirely determined by current idiosyncratic firm productivities εit , and total production thus 
only depends on the aggregate amount of available capital, not its distribution last period.

Calibration and simulation We use a standard calibration of both the aggregate and the micro-
level economy. Periods are interpreted as quarters. We set the quarterly discount factor to 
β = 0.99, corresponding to an equilibrium real rate of around 4%. We set depreciation to 
δ = 0.025 corresponding to a 10% annual depreciation rate. We normalize θ = 4.29, setting 
steady state labor supply N to one third. We set ζ = 0.5, equivalent to a Frisch elasticity of labor 
supply of 2. The persistence of aggregate TFP shocks, ρz, is calibrated to match the one of HP-
filtered Solow residuals. At the micro level, we calibrate α to match an aggregate steady-state 
labor share of 0.64, ν to match a steady-state capital-output ratio of 2.5.19 There is no consensus 
in the literature regarding ρε and σε . We set ρε to 0.8 as in Ábrahám and White (2006), which is 
at the lower end of the range considered in the literature, and σε to 0.15 which is in the middle 

19 The implied value for ν is 0.73, which is broadly in line with Barkai (2017) who documents that returns on labor and 
capital amount to a combined output share of 75.5 percent.
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Table 1
Calibrated parameters.

Parameter Value Rationale

β 0.99 Discount factor; periods are interpreted as quarters.
δ 0.025 Yearly depreciation is 10 percent.
θ 4.29 Scaling parameter. Set so that N = 1/3 at steady state.
ζ 0.5 Frisch elasticity of labor supply is 2.
σ 0.4 Chirinko et al. (1999, 2011); Raval (2015).
α 0.71 Labor share at steady state is 0.64.
ν 0.73 Capital-output ratio at steady state is 2.5.
ρz 0.72 Persistence of HP-filtered Solow residuals.
ρε 0.8 See text.
σε 0.15 See text.

of the range typically used. Finally, we set the micro-level elasticity of substitution σ—a cru-
cial parameter for us—to 0.40, in line with several recent estimates. Chirinko et al. (1999, 2011)
find point estimates of 0.25 and 0.40 using firm-level data, and Raval (2015) finds plant-level 
estimates in the range 0.34 to 0.53. Note that these estimates are significant smaller than cor-
responding estimates at the macro-level (e.g., Karabarbounis and Neiman, 2014), because the 
macro elasticity also includes shifts of production across plants and firms.20 The calibration is 
summarized in Table 1.

We simulate the first-order impulse responses of the economy in three steps: First, we solve for 
the steady state of the model.21 Second, we simulate a log-linearized version of the RBC model 
to determine the first-order movements of aggregate variables. Finally, we use the underlying 
definition of the aggregate production function F to trace out the (highly nonlinear) behavior 
of firms at the micro level as response to the movements of aggregate variables. This method 
linearizes only with respect to aggregate shocks while retaining the full nonlinearity with respect 
to idiosyncratic shocks. It is therefore a particularly tractable example of the approach proposed 
in Reiter (2009).

Dispersion of levels vs. dispersion of growth rates In the partial equilibrium example with iid 
idiosyncratic productivity shocks, we derived results for the dispersion of levels, e.g., the cross-
sectional variance of log employment or log output. In the data, however, many economists have 
focused on the dispersions of growth rates of these variables, e.g., the cross-sectional variance of 
the first difference of log employment or log output. In the context with iid shocks, any growth 
rate dispersion is exactly twice the corresponding level dispersion, so all the above analytical 
results are independent of which of the two approaches we use. In the following model, with 
non-iid shocks, we go with the literature and focus on growth rate dispersions.22

20 See also Oberfield and Raval (2014).
21 This requires computing the aggregate production function F at the steady state of the planning problem in Lemma 1, 
which we find by approximating the idiosyncratic productivity shocks using Rouwenhorst’s method (c.f., Kopecky and 
Suen, 2010).
22 One exception is investment, which is frequently zero in the data (and can become negative in the model) so that both 
logs and growth rates are ill-defined. To avoid this problem, we compute the dispersion of investment-to-capital ratios, 
ιi,t , similar to the approach in Bachmann and Bayer (2014).
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Impulse responses The blue lines in Fig. 2 show the impulse responses of first and second 
moments to a positive innovation in aggregate productivity. The innovation is normalized to lead 
to a 1% increase in aggregate output. The response of first moments in Panel (a) is standard: 
hours, investment, and wages increase. According to our results in the previous subsection (see 
(10)), the key determinant for the cyclicality of dispersions are effective wages, e−zt Wt , shown in 
the last plot. As can be seen, the strong procyclical response in wages dominates the productivity 
shock after around 2.5 quarters, implying that e−zt Wt is countercyclical for only around 2.5 
quarters.

Panel (b) shows the response of growth rate dispersions to the technology shock. On impact, 
the standard deviations of first differences in log output, hours, and the firm-level Solow residual 
are all countercyclical, while the standard deviation of the investment rate ιit ≡ (kit+1 − (1 +
δ)kit )/kit is procyclical on impact.23 Due to the short-lived response of e−zt Wt , the four disper-
sion responses are, however, relatively shortly lived and overshoot after around 2.5 quarters.

As is well known, the strong procyclical response of wages implied by our basic RBC model 
is largely at odds with the data. In addition, there is ample evidence against technology shocks as 
the driving force behind business cycles. For instance, Chari et al. (2007) stress the importance 
of labor wedges for business cycle fluctuations, in line with the idea that recessions are demand-
driven. As a short-cut to demand shocks, we simulate the economy’s response to a shock to the 
labor wedge τN

t , which we model in the standard way, as a wedge in the first order condition for 
labor,

θCtN
ζ
t = (1 − τN

t )ezt FN(Kt ,Nt ).

We choose the path for τN
t to match the output response of the economy after a technology shock 

to allow a direct comparison. The resulting impulse responses are depicted as green circles in 
Fig. 2. Naturally, the labor wedge shock yields a large response of hours and a more counter-
cyclical response of the effective wage e−zt Wt .24 This explains a more pronounced response of 
second moments in response to the labor wedge shock.

How important could this be quantitatively? The gap in GDP between average NBER booms 
and recessions is 5.7%. If the entire gap is driven by fluctuations in the labor wedge, this would 
correspond to a 3.6% peak-to-trough gap in employment growth dispersion. This is roughly one 
third of the peak-to-trough variation in employment growth dispersion documented by Ilut et al. 
(2016).

Dispersion cyclicality in the model and the data To provide a more direct comparison between 
model and data, we now extend the model to exactly replicate US aggregate time series on output, 
employment, consumption and investment. Using the implied time series for second moments, 
we then compute the correlations of model implied second moments with output, and compare 
them with evidence on their cyclicality from the literature.

23 The pro-cyclicality of sd (ιit ) turns out not to depend on σ < 1. To get an intuition for it, set σ = 1 and observe 
that sd

(
kit+1

)
is pro-cyclical, because kit+1 is then proportional to exp

{
ρεεit
1−ν

+ logKt+1

}
. Thus, when Kt+1 is 

greater, the distribution of ρεεit
1−ν

+ logKt+1 shifts up, and—since exp is increasing and convex—the dispersion of kit+1

increases in booms. This is another (albeit immediate) application of our theoretical results. Now, sd
(
kit+1/kit

) ∝
exp

{
logKt+1 − logKt

}
, so the dispersion increases in our model precisely when capital increases.

24 In the presence of shocks to the labor wedge, our notation assumes that Wt is the marginal product of labor, which 
no longer has to equal the observed wage (e.g., the observed wage could be sticky).
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Fig. 2. The response of the quantitative model to productivity and labor wedge shocks. All responses are in percentage 
deviations from the steady state. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)
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Fig. 3. Predicted dispersion series for historical wedge process. Shaded bands indicate NBER recessions.

To replicate the data, we follow Chari et al. (2007) and add government and investment 
wedges to the model (see Appendix D.2 for details). Since our model does not feature growth, 
we eliminate the growth trend from the data by either detrending linearly or applying a high-
pass filter with a 40-year cutoff. Using the extended model, we infer a process for the aggregate 
shocks that match the data perfectly and then compute the firm-level dynamics given the in-
ferred path of the aggregate economy. Fig. 3 plots the time series for the resulting dispersion 
measures alongside NBER recession indicators. Table 2 computes the implied cyclicalities and 
compares them to the evidence in Bachmann and Bayer (2014). For both methods of detrending, 
the model-implied cyclicalities are quantitatively of similar magnitudes to the data. To maximize 
comparability with Bachmann and Bayer (2014), we also consider the case where we apply the 
same filtering procedure to the model simulated time series as Bachmann and Bayer. In particu-
lar, we linearly detrend the simulated dispersion series and correlate them with HP-filtered output 
as a business cycle indicator. The resulting correlation pattern is closely in line with the evidence 
in Bachmann and Bayer (2014).

Takeaway In our main application, we have illustrated how a standard CES production function 
with capital-labor complementarity generates an increasing concave relationship between log 
productivity and log employment across firms. Thus, shifts in the distribution of log productivity 
that preserve its variance and satisfy one of the Assumptions 1–3(i) translate into countercyclical 
shifts in log employment dispersion, as well as several other variables such as log output and 
Solow residuals. In our quantitative exploration, we found that the model-implied cyclicalities 
are of similar magnitude as in the data. A natural avenue for future research would be to repeat 
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Table 2
Correlations of dispersions with output.

Correlation with cycle (logyt )

sd(d logyit ) sd(d lognit ) sd(d logait ) sd(ιit )

Model (linearly detrended) −0.33 −0.32 −0.34 +0.59
Model (high-pass filtered) −0.43 −0.43 −0.44 +0.61
Model (data-analogue) −0.42 −0.43 −0.40 +0.52

Data −0.45 −0.50 −0.47 +0.45

Notes.—Data refers to evidence in Bachmann and Bayer (2014, Table 1). The model analogues are 
simulated using the model to filter through U.S. data where the long-run trend is removed by either 
linearly detrending or by applying a high-pass filter with 40 years (see Appendix D.2 for details). 
In row 3, we further apply the same filtering-techniques to the simulated data that Bachmann and 
Bayer (2014) apply to the raw data (i.e., we linearly detrend the resulting dispersion series and 
correlate them with HP-filtered output).

our exercises here in a richer and more quantitative economy that includes several additional 
ingredients—such as adjustments costs to labor and capital—which we have abstracted from 
here.

4. Other applications

We now present three additional, smaller applications that illustrate the broad applicability 
of our theoretical results. The first example relates the dispersion of marginal revenue products 
of capital—a prominent proxy for misallocation used in the recent literature—to the nature of 
the shocks that cause cyclical fluctuations. The second example revolves around risk. In par-
ticular, it revisits the classic finance question of how the payoff profile of a security affects its 
payoff and return risk. In our final example, we illustrate how posterior uncertainty can fluctuate 
endogenously as soon as learning takes place over a non-linear function of the fundamental.

4.1. MRPK and the business cycle

A recent literature on misallocation following Hsieh and Klenow (2009) uses the cross-
sectional dispersion of marginal revenue products of capital (MRPK) to identify misallocation 
of capital across firms. One common rationale to explain this are financial frictions, which es-
sentially prevent productive plants from accumulating the efficient amount of capital (e.g., Moll, 
2014; Buera and Moll, 2015; Kehrig, 2015; Gopinath et al., 2015). In this application, we ex-
plore a simple static setup where firms face borrowing constraints, and show how the dispersion 
of MRPK depends on the distribution of productivity relative to the distribution of borrowing 
constraints.

Assume there is a unit interval of firms, indexed by i ∈ [0, 1]. Firms are perfectly competitive 
and sell in a market with price normalized to 1. Each firm operates a production technology 
exhibiting decreasing returns to scale,

Yi = AiK
α
i .

Here, Ai is firm i’s productivity and Ki is the capital rented by firm i. One way to rationalize 
such a production function is that there is a fixed factor such as land or entrepreneurial labor 
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which is owned by the entrepreneur that runs the firm. We excluded workers from the produc-
tion function to streamline the exposition. All results go through when firms use labor from a 
common labor market and labor and capital enter the production function in a Cobb-Douglas 
way with decreasing returns to scale. In this sense, we interpret Ai more broadly than just firm 
i’s productivity: Even when productivity itself does not improve, an increase in Ai might still 
happen due to a boom in employment or hours.25 With some slight abuse of terminology, we still 
refer to Ai as productivity in the following paragraphs.

The crucial ingredient to our analysis is the imposition of a borrowing constraint: Firm i can 
only rent capital up to an exogenous limit Ki which may depend on i. Thus firm i solves

max
Ki≤Ki

AiK
α
i − rKi.

The MRPK of firm i may then exceed r ,

MPRKi = AiK
α−1
i = r + μi,

if and only if the borrowing constraint binds, μi > 0. We can express the multiplier as

μi = max
{

0,AiK
α−1
i − r

}
which yields the following expression for the MRPK,

logMRPKi = max
{
log r, logAi − (1 − α) logKi

}
.

Noticing that max{log r, ·} is a convex and weakly increasing function, the following result is an 
immediate consequence of Theorem 1.

Proposition 3. The dispersion of log MRPK increases if

(i) the cross-sectional distribution of log productivities shifts up such that one of Assump-
tions 1–3(i) holds without changing its variance and the shifts are orthogonal to logKi .

(ii) the cross-sectional distribution of log constraints shifts down such that one of Assump-
tions 1–3(i) holds without changing its variance and the shifts are orthogonal to logAi .

Proposition 3 illustrates how the degree of misallocation is essentially pinned down by the 
relative position of productivity and borrowing constraints. In a world with only productivity 
improvements, misallocation would increase, while in a world with more relaxed borrowing 
constraints, misallocation falls.

More realistically, borrowing constraints are correlated with a firm’s business conditions. For 
instance, suppose that Ki is a function of each firm’s revenue, AiK

α
i , and some credit supply-

driven factor ui :

logKi = ε log(AiK
α
i ) + ui, (17)

where ε < 1/α is the elasticity of Ki to firm-revenues. In this case, the dispersion in MRPKs 
increases during productivity-driven booms (or, similarly, in high-productivity sectors) if and 
only if ε < 1, which could reflect, say, a lack of information by financial markets about Ai . In 
contrast, a “financially-driven” crisis akin to a downward shift in the distribution of ui would 

25 Such a boom could come about due to an increase in labor supply or in aggregate demand.
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Table 3
Cross-sectional standard-deviation of MRPK in the numerical example.

Financial constraints

Healthy Tight

1σ avg boom 0.98 1.50
(+21.2%) (+84.9%)

1σ avg recession 0.66 1.06
(−18.3%) (+30.7%)

Notes.—All standard deviations are rescaled by a factor of 100. The two columns display 
two regimes for the financial constraint: In the left (right) column, 5 (10) percent of firms 
are constrained absent a productivity shock. In parentheses, we report the differences (in 
percent) to the case in which aggregate productivity is at its median value and financial 
constraints are healthy.

unambiguously increase the dispersion of MRPKs. The following proposition summarizes the 
results.

Proposition 4. Suppose Ki is given by (17).

(i) If the distribution of log productivities {logAi} shifts up such that one of Assumptions 1–3(i) 
holds without changing its variance and shifts are orthogonal to ui , then Var{MRPKi}
increases (decreases) if ε < 1 (ε > 1).

(ii) If the distribution of credit factors {ui} shifts up such that one of Assumptions 1–3(i) holds 
without changing its variance and shifts are orthogonal to logAi , then Var{MRPKi} de-
creases.

Propositions 3(i) and 4(i) provide a possible explanation for why certain booms can raise the 
degree of misallocation as documented by, e.g., Garcia-Santana et al. (2015) and Gopinath et al. 
(2015) in the case of Spain between 1995 and 2007.

Numerical example We quantify the model using a simple and very stylized numerical example 
with log productivities given by ai = z + εi . The cross-sectional distribution of productivities 
is log normal with the same (unconditional) standard deviation as in the previous subsection. 
The (unconditional) standard deviation of z is set to 0.038, corresponding to a (unconditional) 
standard deviation of aggregate productivity shocks that is one order of magnitude smaller than 
their idiosyncratic counterpart. The capital share α is set equal to 0.3, the cost of capital r is 
set equal to 0.05, and the elasticity of the constraint to revenues ε is set equal to 0.8.26 Finally, 
we consider two scenarios for the tightness of financial constraints. In the “healthy” baseline 
scenario, we set ui = ū5% where ū5% is so that a fraction of 5 percent of firms are constrained 
in the absence of an aggregate productivity shock. In the “tight” scenario, that is supposed to 
capture a negative credit supply shock, we set ui = u10%, so that a fraction of 10 percent of firms 
are constrained (without aggregate productivity shock).

Table 3 displays the cross-sectional standard deviation of MRPK across firms.

26 Since we do not have a strong prior on ε it is worth mentioning that all results discussed below are robust to the exact 
choice of ε. While different values affect the level of the MRPK-dispersion, they have virtual no effect on the cyclical 
changes discussed below (in percentage-terms) as long as ε < 1.
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The left column shows the effects of a change in the average firms’ productivity when finan-
cial conditions are healthy (5 percent of firms being constrained in the absence of a productivity 
shock), whereas the right column shows the same statistics for the case where financial condi-
tions imply a twice-as-high fraction of firms being constrained (without aggregate productivity 
shock). In both cases a one standard deviation increase in the average productivity increases the 
dispersion of MRPK by roughly 20 percent. Comparing the two columns further illustrates a 
significant increase in the dispersion induced by an increase in financial pressure. Compared to 
the baseline case, even a 1σ avg reduction in average productivity increases the dispersion by 31 
percent when combined with financial pressure. The results are broadly in line with the evidence 
given in Gopinath et al. (2015) who find that the dispersion of MRPKs in Spain increased by 
almost 30 percent between 2000 and 2012.

4.2. Risk in financial derivatives

Our third example illustrates how the payoff profile of a security influences the cyclicality of 
the risk premium associated with it. It is shown for instance that derivatives with concave in-
creasing payoff profiles as function of their underlying (e.g., debt contracts) have countercyclical 
return risk, while derivatives with convex decreasing payoff profiles (e.g., Put options) have pro-
cyclical return risk. The cyclicality here is determined with respect to constant-risk shifts in the 
underlying and without strong distributional assumptions. While these results may not be entirely 
novel, viewing them through our theoretical framework gives them a new level of generality.

The economy we study is a simple financial market setup, consisting of two periods, t = 0,1, 
and a continuum of identical traders with standard mean-variance preferences over t = 1
wealth W ,

EW − α

2
Var(W),

where α > 0 measures the degree of risk aversion. We assume that the agents trade a real asset 
(i.e. the market portfolio) with stochastic payoff X0 in unit supply, as well as derivative assets 
with stochastic payoffs Xi in zero net supply. The representative agent’s holdings of asset k ∈
{0, 1, . . . , K} are denoted by ak and the price of asset k is denoted by pk . This implies that t = 1
wealth is given by

W = X0 +
K∑

k=1

ak(Xk − (1 + r)pk),

where we use r > 0 to denote the risk-free interest rate.27

Our goal in the following is to characterize equilibrium prices for a given derivative asset Xk, 
whose payoff can be described as a monotone function of the market, Xk = g(X0). The starting 
point for the analysis is, of course, the first order optimality condition with respect to ak , yielding

EXk − (1 + r)pk = αCov(X0,Xk).

Notice that this is almost like a Capital Asset Pricing Model (CAPM), which holds in our mean-
variance environment, only that the equation is in terms of actual payoffs rather than returns.28

27 To be precise, one can imagine this to be the subproblem of a full 2-period maximization problem over consumption 
at both dates, t = 0, 1. Given a risk-free rate of r , the t = 1 price paid for asset k is then (1 + r)pk .
28 One could easily derive the CAPM ERk − (1 + r) = αCov(X0, Rk) in our model. See Corollary 3 below.
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We now investigate how the “risk term” in the pricing equation, αCov(X0, Xk), behaves under 
changes in X0.

Proposition 5. As we move from X0 to a random variable X′
0 such that either Assumption 1 or 

Assumption 2 holds for X0 and X′
0, then the risk term in the price of asset k with monotone g

1. increases whenever g is convex,
2. decreases whenever g is concave.

The basic intuition of Proposition 5 is very much along the lines of Theorem 1: When As-
sumption 1 holds, the distribution X′

0 is a positive equal-variance shift of X0. Hence, when g is 
convex, Var{Xk} = Var{g(X0)} must increase as we move from X0 to X′

0. This already indicates 
that the covariance between X0 and Xk = g(X0) should also increase, as long as the correlation 
is increasing, or at least not decreasing too fast. The logic of the formal proof of Proposition 5
in Appendix D.3 is similar to the proof strategy of Theorem 1, detailed in Proposition 6 in the 
Appendix.

There are a number of well-known examples for the behavior described in Proposition 5. 
Perhaps most prominently, if Xk is a Call or Put option with X0 as its underlying asset, then 
g would be convex, explaining why the risk term increases for both Calls and Puts, with the 
difference that the Put’s risk term is negative and rises towards zero while the Call’s is positive. 
In a corporate finance context, one could think of X0 as the (random) asset side of a firm’s 
balance sheet and of Xk = g(X0) a corporate debt contract. In this situation, the risk in the debt 
contract is countercyclical with respect to the firm’s assets: In bad times, when the asset side is 
potentially below the debt’s principal value, credit risk rises.

Finally, notice that our Proposition 5 was stated for the risk term αCov(X0, Xk) as opposed to 
the risk premium, which we define as ERk − (1 + r) = αCov(X0, Rk). We can derive a similar 
result, albeit less sharp, for the risk premium.

Corollary 3. As we move from X0 to a random variable X′
0 such that either Assumption 1 or 

Assumption 2 holds for X0 and X′
0, then the risk premium of asset k

1. increases whenever g is convexly decreasing,
2. decreases whenever g is concavely increasing.

The key observation behind Corollary 3 is that the risk premium can be expressed as

ERk − (1 + r) = (1 + r)
αCov(X0,Xk)

EXk − αCov(X0,Xk)
.

Thus, when g increases concavely (e.g., like a debt contract), then EXk rises as well as X0

moves to X′
0, while, according to Proposition 5, αCov(X0, Xk) falls, explaining a drop in the 

risk premium. A similar logic applies to the case where g is convexly increasing, for example to 
Put options.

Summing up, this application showed how our results can be applied to a basic asset pricing 
context. We illustrated that the concavity or convexity of a derivative’s payoff structure crucially 
determines the comovement of the risk inherent in the derivative with the underlying asset.
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4.3. Nonlinear learning and uncertainty

Our final example is a simple Bayesian learning problem where nonlinearities in the signal 
structure cause posterior uncertainty to be a function of the signal realization. In past years, such 
learning problems have spurred a considerable research interest among macroeconomists, see 
e.g., Straub and Ulbricht (2012), Orlik and Veldkamp (2014), Kozeniauskas et al. (2016), and 
Albagli et al. (2015).

To see how the aforementioned theorems are useful to study such a problem, suppose θ is 
the unknown variable an observer seeks to gather information about. She observes a signal s
about a nonlinear transformation of θ , φ = g(θ). Suppose g is increasing and concave. To fix 
ideas, suppose for instance that θ defines the optimal investment level of a firm, summarizing a 
firm’s private information regarding future business conditions. Also suppose that the firm faces 
financial constraints, limiting its investments to satisfy k ≤ k. Relabeling φ = k, we then have 
g(θ) = min{θ, k}, giving rise to an increasing concave mapping.29

There are two steps to the agent’s updating problem: First, she forms a posterior over the 
values of φ. Then, she maps her posterior from values of φ to values of the variable of her inter-
est, θ . In the following, we assume the agent solved her first problem and is left with a situation 
where the posterior φ|s satisfies either Assumption 1, 2 or 3 above. Arguably, these are natural 
assumptions in the context of a signal extraction problem: Condition (i) of Assumptions 1–3 rep-
resent a simple monotonicity requirement, demanding that higher signal realizations correspond 
to higher values of φ in the sense of the respective stochastic order. Condition (ii) is a preci-
sion requirement, demanding that the transformation g, and the transformed variable φ itself, are 
such that the posterior variance does not shrink exogenously as the agent observes higher signal 
realizations.

What can our Theorems tell us about the posterior belief θ |s? It is relatively straightforward 
to see that, based on condition (i) of Assumptions 1–3, the first moment E{θ |s} increases with s. 
However, this does not yet provide us with any information about the behavior of the second 
moment. Theorem 1 implies that, in fact, the second moment, Var{θ |s} is also increasing in s.

The intuition for this application is as follows: As the agent observes a large realization of sig-
nal s, she rationally updates that large values of φ are relatively likely. For the correspondingly 
large values of θ the nonlinear function g is relatively flat, implying that the posterior variance 
over φ translates into relatively large posterior variances over θ . With the interpretation of φ
as firm investments, this means that learning from financially constrained firms leads to higher 
uncertainty, because financially constrained firms respond less to changes in business fundamen-
tals, so that for large realization of the signal (relative to the financial constraint), the signal is 
more likely to be driven by signal noise.

In sum, this application illustrates how a simple nonlinear signal structure can give rise to 
endogenous, signal-dependent movements in uncertainty.30

5. Conclusion

In this paper we studied the behavior of second moments under nonlinear transformations. 
We showed that when a random variable shifts up, in one of three senses (MLRP, affine linear, or 

29 This example is inspired by Straub and Ulbricht (2012).
30 For alternative approaches to modeling endogenous variations in uncertainty, see, e.g., van Nieuwerburgh and Veld-
kamp (2006), Nimark (2014), Straub and Ulbricht (2014), Fajgelbaum et al. (2017), and Senga (2016).
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affine-linear in transformed variables) but keeps the same variance, the variance of any convex 
increasing or concave decreasing transformation of it necessarily increases. We see our theoret-
ical contribution in proving the MLRP result and providing elementary proofs in the two other 
settings.

The economic implications of our theoretical results were illustrated in four different settings. 
The first and main application provided a (to the best of our knowledge) novel explanation for 
the cyclicalities of the dispersions of macroeconomic variables; the second application extended 
these insights to the cross-sectional dispersion of MRPKs which is often used to measure cap-
ital misallocation; the third application studied the cyclicality of derivative risks; and the final 
application shows how our results can be used to generate endogenously fluctuating uncertainty.

An understanding of how and why second moments move over the business cycle is directly 
important for policymaking: With exogenous second moment shocks, understanding and pos-
sibly mitigating the sources of these shocks becomes important. Endogenous second moment 
shocks, however, may not carry any policy consequences at all. As an example, the quantita-
tive model in our first application is efficient and nonetheless can produce some of the cyclical 
properties of cross-sectional dispersions that we see in the data. Understanding the policy im-
plications in models with endogenous second moments more broadly is a promising avenue for 
future research.
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Appendix A. Proof of Theorem 1

We prove Theorem 1 using a sequence of lemmas and propositions. The main proposition 
that we establish below relates the difference between covariances of X and Y with some other 
random variables to the difference between the covariances of g(X) and g(Y ) with the same 
other random variables (Proposition 6). The advantage of proving this result as a first step is that 
it is “linear”, in the sense that X and Y only enter linearly, whereas the result in Theorem 1 is 
quadratic. By essentially applying Proposition 6 twice, we can then establishes Theorem 1.

A.1. Notation and assumptions

We introduce the following notation for our proof. For any real random variable Z which 
admits a density with respect to measure μ we denote by fZ the density function of Z, by FZ the 
right-continuous cumulative density of Z, and by QZ : (0, 1) → R the right-continuous quantile 
function, defined as

QZ(u) = inf
x∈R

{x : FZ(x) ≥ u}.
Further, we denote by μZ the mean of Z (as long as it exists) and let qZ : (0, 1) → R, 
qZ(u) = QZ(u) −μZ , be a “normalized” quantile function, as well as qZ : (0, 1) → R, qZ(u) ≡∫ u

0 qZ(ũ)dũ, be an “integral” quantile function. Notice that whenever the mean of Z exists, the 
integral of qZ over [0, u] exists for all u ∈ [0, 1] and qZ(0) = qZ(1) = 0, by the property of the 
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quantile function that 
∫ 1

0 QZ(u)du = μZ . Furthermore, because qZ is weakly increasing from 
negative to positive values, qZ is quasiconvex (i.e., u-shaped).

In the following we let ZX and ZY be two real random variables, satisfying the following 
assumptions.

Assumption 4. The random variables ZX and ZY satisfy the following assumptions:

1. ZX and X are perfectly rank-correlated, that is, there exists a random variable U ∼ unif[0, 1]
that is uniformly distributed over the unit interval such that ZX = QZX

(U) and X = QX(U). 
Similarly, ZY and Y are perfectly rank-correlated.

2. ZX and ZY have finite mean and nontrivial variance.
3. The ratio

qZX
(FX(x))

qZY
(FY (x))

,

defined for values of x for which it is positive and finite, is weakly decreasing in x.
4. Let IX (IY ) denote the interval of zeros of the function x �→ qZX

(FX(x)) (x �→ qZY
(FY (x))). 

Then, inf IX < inf IY and sup IX < sup IY .

While these assumptions appear technical at first, they will help us prove the necessary results 
about covariances in the next section.

A.2. Covariances

We now state the main result of this appendix.

Proposition 6. Let ZX and ZY be two random variables satisfying Assumption 4, and X and Y
two random variables satisfying Assumption 1 (i). Let g : R →R be a convex, strictly increasing, 
continuously differentiable function. Then it holds that

Cov(X,ZX) ≤ Cov(Y,ZY ) ⇒ Cov(g(X),ZX) ≤ Cov(g(Y ),ZY ),

where the latter inequality is strict if g is strictly convex.

We prove the result in a sequence of smaller steps. In our first step, we prove some properties 
of the function δ : supp(X) ∪ supp(Y ) → R, δ(x) = qZY

(FY (x))fY (x) − qZX
(FX(x))fX(x), 

which is defined on the supports of X and Y .

Lemma 2. We have the following results about δ:

1. If x ∈ conv(IX ∪ IY ), then δ(x) ≤ 0.31

2. If x > IY and δ(x) > 0, then δ(x′) > 0 for all x′ > x.
3. If x < IX and δ(x) > 0, then δ(x′) > 0 for all x′ < x.

Proof. We treat each case in turn.

31 Here, conv(A) denotes the convex hull of set A ⊂R.
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1. In this case, by the definitions of IX and IY , either δ(x) = 0—if x ∈ IX ∩ IY —or δ(x) <
0—if x > IX or x < IY , since the normalized quantile functions qZY

and qZX
are weakly 

decreasing.32

2. Fix such a x > IY with δ(x) > 0, and a x′ > x in the support of X or Y . Then, δ(x′) > 0 is a 
direct consequence from the following set of inequalities,

fY (x′)
fX(x′)

≥ fY (x)

fX(x)
>

qZX
(FX(x))

qZY
(FY (x))

≥ qZX
(FX(x′))

qZY
(FY (x′))

,

where the first inequality follows from the MLRP of X and Y , the second inequality follows 
from δ(x) > 0, and the third inequality follows from the fact that for x > IY the ratio in 
Assumption 4.3 is positive and hence weakly decreasing. Comparing the first and last terms 
of this set of inequalities, this implies δ(x′) > 0.

3. Analogously to the previous case, if x < IX , the ratio in Assumption 4.3 is positive and 
hence weakly decreasing. Thus, for any x ′ < x in the support of X,

fY (x′)
fX(x′)

≤ fY (x)

fX(x)
<

qZX
(FX(x))

qZY
(FY (x))

≤ qZX
(FX(x′))

qZY
(FY (x′))

,

where again we used the MLRP of X and Y and the fact that δ(x) > 0. Taken together, this 
implies δ(x′) > 0. �

These results turn out to be very helpful in characterizing the behavior of the function � :
R → R, �(x) = qZY

(FY (x)) − qZX
(FX(x)). Notice that, by definition of �,

�(x) =
∫

(−∞,x]
δ(x̃)μ(dx̃), (A.1)

which is to be understood as a Lebesgue integral with measure μ, restricted to (−∞, x] (so 
that it nests all three cases, where μ is continuous, discrete, or anything in between). We can 
characterize � as follows.

Lemma 3. � has limits limx→−∞ �(x) = limx→+∞ �(x) = 0. There exists a point x0 ∈R such 
that �(x) ≤ 0 for all x ≥ x0 and �(x) ≥ 0 for all x ≤ x0, with strict inequality for at least a 
non-zero measure of such x.

Proof. First, note that the limits of � come from the fact that qZX
and qZY

are continuous and 
zero for arguments 0 and 1, and the cumulative distribution functions FX and FY have the usual 
limits for x → ±∞. Second, we prove that an x0 exists with sup{x : �(x) ≥ 0} ≤ x0 ≤ inf{x :
�(x) ≤ 0}. Suppose it did not. Then there must exist x1 < x2 with �(x1) < 0 < �(x2). As in 
(A.1) we can write

�(x2) − �(x1) =
∫

(x1,x2]
δ(x)μ(dx) (A.2)

and

32 Here, x > IX means x > a for all a ∈ IX . Similar for x < IY .
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�(x1) =
∫

(−∞,x1]
δ(x)μ(dx) and 0 − �(x2) =

∫
(x2,∞)

δ(x)μ(dx). (A.3)

Using (A.2) and �(x2) − �(x1) > 0, there must exist a a1 ∈ (x1, x2] such that δ(a1) > 0. On the 
other hand, using (A.3) and �(x1) < 0 < �(x2), there must exist a0 < x1 and a2 > x2 such that 
δ(a0) < 0 and δ(a2) < 0. This contradicts Lemma 2: If a1 < IX , then δ(a0) would have to be 
positive. If a1 ∈ conv(IX ∪ IY ), δ(a1) would have to be negative. And if a1 > IY , δ(a2) would 
have to be positive. This proves {� ≥ 0} ≤ x0 ≤ {� ≤ 0}.

Finally, we show that there exists a non-zero measure of x such that �(x) �= 0. Suppose the 
contrary was true, �(x) = 0 for μ−almost all x. Then δ(x) must be zero μ-almost every x. This 
cannot be the case given that we assumed in Assumption 4.4 that for example inf IX < inf IY . 
This concludes the proof of Lemma 3. �

Finally we are ready to prove Proposition 6.

Proof of Proposition 6. Notice that by Assumption 4.1 we can express covariances as integrals 
over the “normalized” quantile functions,33

Cov(g(Y ),ZY ) − Cov(g(X),ZX) =
1∫

0

qZY
(u)g(QY (u))du −

1∫
0

qZX
(u)g(QX(u))du.

Substituting out u for FY (x) in the first integral and FX(x) in the second one, this simplifies to

Cov(g(Y ),ZY ) − Cov(g(X),ZX) =
∫
R

g(x)δ(x)μ(dx). (A.4)

Using integration by parts, we further rewrite this as

Cov(g(Y ),ZY ) − Cov(g(X),ZX)

= lim
x→∞g(x)�(x) − lim

x→−∞g(x)�(x) −
∫
R

g′(x)�(x)dx.

We now consider each limit in turn, starting with the one for x → ∞. Notice that for sufficiently 
large x, g(x) > 0 and δ(x) ≥ 0, hence

lim
x→∞|g(x)�(x)| = lim

x→∞

∫
(x,∞)

g(x)δ(x̃)μ(dx̃) ≤ lim
x→∞

∫
(x,∞)

g(x̃)δ(x̃)μ(dx̃) = 0

where the last equality follows by the existence and finiteness of the covariances in (A.4). Con-
sider now x → −∞. Focus first on the case where g eventually turns negative for sufficiently 
small x. Then,

lim
x→−∞|g(x)�(x)| = − lim

x→−∞

∫
(−∞,x]

g(x)δ(x̃)μ(dx̃)

33 For any two perfectly rank-correlated random variables Z1 = QZ1 (U) and Z2 = QZ2 (U) (for some common 
uniform-distributed U ) it holds that Cov(Z1, Z2) =E[Z1(Z2 − μZ )] =E[QZ (U)qZ (U)] = ∫ 1

qZ (u)QZ (u)du.
2 1 2 0 2 1
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≤ − lim
x→−∞

∫
(−∞,x]

g(x̃)δ(x̃)μ(dx̃) = 0,

where, again, the last equality follows by the existence and finiteness of the covariances in (A.4). 
If g stays positive for all x, then the limit limx→−∞ g(x) exists and is finite. Hence,

lim
x→−∞|g(x)�(x)| =

(
lim

x→−∞g(x)

)(
lim

x→−∞�(x)

)
= 0.

This proves that

Cov(g(Y ),ZY ) − Cov(g(X),ZX) = −
∫
R

g′(x)�(x)dx. (A.5)

A completely analogous computation establishes that

0 ≤ Cov(Y,ZY ) − Cov(X,ZX) =
∫
R

xδ(x)μ(dx) = −
∫

�(x)dx. (A.6)

By convexity of g, g′(x) is weakly increasing and thus

−
∫
R

g′(x)�(x)dx ≥ −g′(x0)

∫
�(x)dx (A.7)

where we used the x0 with {� ≥ 0} ≤ x0 ≤ {� ≤ 0} shown to exist in Lemma 3. Using (A.5) and 
(A.6), this establishes the weak inequality Cov(g(Y ), ZY ) − Cov(g(X), ZX) ≥ 0.

For the case where g′(x) is strictly increasing, notice that according to Lemma 3 � �= 0 on 
a non-zero measure set and so the inequality in (A.7) is strict. In that case, Cov(g(Y ), ZY ) −
Cov(g(X), ZX) > 0. This proves Proposition 6. �
A.3. Variances

In order to prove Theorem 1 itself, we can now apply Proposition 6 twice. This is essentially 
the idea behind the following proof.

Proof of Theorem 1. Pick ZX = X and ZY = Y . Notice that Assumptions 4.1 and 4.2 are satis-
fied by construction. Assumption 4.3 holds because

qZX
(FX(x))

qZY
(FY (x))

= x − μX

x − μY

= 1 + μY − μX

x − μY

,

which is strictly decreasing. Also, the function x �→ qZX
(FX(x)) = x − μX has a unique zero 

at x = μX which is clearly strictly less than x = μY , the unique zero of x �→ qZY
(FY (x)) =

x − μY . Therefore, Assumption 4.4 is satisfied as well and we can apply Proposition 6. Since 
by assumption Assumption 1(ii), Cov(X, X) = Var{X} ≤ Var{Y } = Cov(Y, Y), Proposition 6
implies that

Cov(g(X),X) ≤ Cov(g(Y ),Y ),

with strict inequality if g is strictly convex.
In a second step, we apply Proposition 6 again, but this time using ZX = g(X) and ZY = g(Y ). 

Again, Assumptions 4.1 and 4.2 are satisfied by construction, and Assumption 4.3 holds because
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qg(X)(FX(x))

qg(Y )(FY (x))
= g(x) − μg(X)

g(x) − μg(Y )

= 1 + μg(Y ) − μg(X)

g(x) − μg(Y )

,

which is still strictly decreasing given that g(Y ) MLRP-dominates g(X) and hence has a larger 
mean. Assumption 4.4 is satisfied because the unique zero of x �→ g(x) − μg(X), g−1(μg(X)), 
is strictly smaller than g−1(μg(Y )), which is the unique zero of x �→ g(x) − μg(Y ). In sum, the 
conditions of Proposition 6 are satisfied, and we obtain

Var{g(X)} = Cov(g(X), g(X)) ≤ Cov(g(Y ), g(Y )) = Var{g(Y )},
with strict inequality if g is strictly convex. This concludes the proof of Theorem 1. �
Appendix B. Proof of Theorem 2

In this proof, we assume without loss of generality that EX = 0 (a simple horizontal trans-
lation of X and g establishes the general result). Also, we only prove the strict version of the 
theorem. The weak version follows by replacing strict inequalities with weak ones throughout 
the proof.

By Assumption 2(i) and EX = 0 it follows that α1 > 0. By Assumption 2(ii) it follows that 
α2 > 0. Define the function Gg,X : [0, α1] × [0, α2] → R by

Gg,X(β1, β2) = Var{g(β1 + β2X)} − Var{g(X)}.
For convenience we drop the subscripts of Gg,X during the proof, yet since the proof of Theo-
rem 3 is very similar, it is good to keep the explicit dependence of Gg,X on g and X in mind.34

We now prove that G is strictly increasing in (i) β1 and (ii) β2. Notice that this also establishes 
the well-definedness (finiteness) of G. To prove parts (i) and (ii) we use a simple lemma which 
we study first. For this, let us introduce two real, non-degenerate random variables Z1 and Z2
which satisfy the following assumption.

Assumption 5. Z1 and Z2 are perfectly rank correlated, that is, there exists a random variable 
U ∼ unif[0, 1] that is uniformly distributed over the unit interval such that Zi = QZi

(U), for 
some weakly increasing measurable functions QZi

: [0, 1] → R.

Let supp(Z2) denote the support of Z2. The key lemma is as follows.

Lemma 4. Suppose random variables Z1 and Z2 satisfy Assumption 5. Suppose further that 
h : supp(Z2) → R is a continuous function with h(z) − z increasing in z. Then,

Cov(Z1,Z2) ≤ Cov(Z1, h(Z2)) (B.1)

and strictly so if h(z) − z is strictly increasing.

Proof. Notice that

Cov(Z1, h(Z2)) − Cov(Z1,Z2) = Cov(Z1, h(Z2) − Z2) ≥ 0

since both Z1 and h(Z2) − Z2 can be expressed as weakly increasing functions of U , and it 
is known that the covariance of two perfectly rank-correlated random variables is non-negative 

34 Essentially, the proof of Theorem 3 proceeds by changing g and X in the definition of Gg,X .
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(see, e.g., Schmidt, 2003 for an elementary proof). The covariance Cov(Z1, h(Z2) − Z2) can 
only be equal to zero if Z1 were degenerate, which is ruled out by assumption, or if h(z) − z

were (a.e.) constant over the support of Z2. Hence, if h(z) − z is strictly increasing, (B.1) can 
only be strict. �
Part (i): G strictly increasing in β1 Consider β1 ∈ [0, α1), β2 ∈ [1, α2] and β ′

1 ∈ (β1, α1], 
i.e. β ′

1 > β1. For simplicity, we let Z ≡ g(β1 +β2X) and Z′ ≡ g(β ′
1 +β2X) with the goal to show 

that Var{Z} < Var{Z′}. Define the function h : (g, ∞) → R by h(z) = g(g−1(z) + (β ′
1 − β1))

where g = infz∈R g(z) ∈ [−∞, ∞). By definition, h is strictly increasing and h(Z) = Z′.
We now prove that h(z) − z is strictly increasing. First, rewrite h(z) − z as

h(z) − z = g(g−1(z) + (β ′
1 − β1)) − g(g−1(z)).

Introduce the notation ε ≡ β ′
1 − β1 > 0 and a ≡ g−1(z). By strict convexity of g, it holds for any 

� > 0 that

g(a) + g(a + � + ε) = �

� + ε
g(a) + ε

� + ε
g(a + � + ε)︸ ︷︷ ︸

>g(a+ε)

+ ε

� + ε
g(a) + �

� + ε
g(a + � + ε)︸ ︷︷ ︸

>g(a+�)

> g(a + ε) + g(a + �)

and therefore, for any z′ > z, defining � ≡ g−1(z′) − g−1(z),

h(z′) − z′ = g(a + � + ε) − g(a + �)

> g(a + ε) − g(a) = h(z) − z,

establishing that h(z) − z is strictly increasing.
Notice that Z and Z′ are by construction perfectly rank-correlated, using U ≡ X. Thus, ap-

plying Lemma 4 twice, we find

Var{Z} = Cov(Z,Z) < Cov(Z,h(Z)︸︷︷︸
Z′

) < Cov(Z′,Z′) = Var{Z′},

concluding the proof of part (i).

Part (ii): G strictly increasing in β2 Consider β1 ∈ [0, α1), β2 ∈ [1, α2) and β ′
2 ∈ (β2, α2]. 

Define Z = g(β1 + β2X) and Z′ = g(β1 + β ′
2X). The goal is again to show that Var{Z} <

Var{Z′}. By construction, h(Z) = Z′, where we now define

h(z) = g

(
β ′

2

β2
(g−1(z) − β1) + β1

)
.

In the following, denote χ ≡ β ′
2/β2 > 1 and let z∗ be the unique value such that g−1(z∗) = β1. 

Notice that h(z∗) = z∗. We now prove again that h(z) − z is strictly increasing.
By definition of h it holds that

g−1(h(z′)) − g−1(h(z)) = χ(g−1(z′) − g−1(z)),
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and, defining a ≡ g−1(h(z′)), b ≡ g−1(h(z)), c ≡ g−1(z′), d ≡ g−1(z), this implies that χ =
(a − b)/(c − d) and

g(a) + χg(d) = g(a)

(
b − d

a − d
+ χ

c − d

a − d

)
+ χg(d)

(
a − c

a − d
+ a − b

a − d
χ−1

)

≥ χg(c) + g(b),

or rearranging this,

h(z′) − z′ ≥ h(z) − z + (z′ − z)(χ − 1) > h(z) − z.

Thus, applying Lemma 4 twice again, we find

Var{Z} = Cov(Z,Z) < Cov(Z,h(Z)︸︷︷︸
Z′

) < Cov(Z′,Z′) = Var{Z′},

concluding the proof of part (ii).

Appendix C. Proof of Theorem 3

This proof uses a similar strategy as the proof of Theorem 2 in Appendix B above. We assume 
without loss that E{g(X)} = 0 which can achieved by a simple vertical translation of g. The 
assumption that E{g(Y )} > E{g(X)} then implies that α1 > 0. Define the function Gg−1,g(X) :
[0, α1] × [0, α2] → R by

Gg−1,g(X)(β1, β2) = Var{g−1(β1 + β2g(X))} − Var{X}.
Notice that Gg−1,g(X)(0, 1) = 0, Gg−1,g(X)(α1, α2) = Var{Y } − Var{X} ≥ 0, and Var{g(Y )} =
α2

2Var{g(X)}, so it remains to be shown that α2 > 1. We now prove that Gg−1,g(X)(β1, β2) is 
strictly decreasing in β1 and strictly increasing in β2, and thus, due to α1 > 0, Gg−1,g(X)(α1, α2) ≥
0 necessitates that α2 > 1.

The function g−1 is increasing and concave, so the function h(z) ≡ −g−1(−z) is increasing 
and strictly convex. Observe that

Gg−1,g(X)(β1, β2) = Gh,h−1(−X)(−β1, β2).

As h is increasing convex and E{h−1(−X)} = 0, we can follow the exact steps of the proof 
of Theorem 2 to show that Gh,h−1(−X) is strictly increasing in both its first and second argu-
ments. Therefore, Gg−1,g(X)(β1, β2) strictly decreases in β1 and strictly increases in β2, which 
concludes the proof of Theorem 3.

Appendix D. Appendix for the applications

D.1. Proof of Lemma 1

We prove both directions of this result.
Start with an allocation {Ct, Kt+1, Nt }. The claim is that if the allocation solves (15), there 

exists an equilibrium to support the allocation. Given the processes {zt, εit }, define the candi-
date equilibrium as follows: Wt ≡ FN(Kt , Nt), rt ≡ ezt FK(Kt , Nt) − δ, Qt ≡ (1 + rt )

−1Qt−1, 
Q0 ≡ 1, kit+1 ≡ k(εit ), nit ≡ n(εit−1, uit ), yit is set according to the production (12), profits πit
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are set according to (8), vit is set according to (7), and Vt ≡ ∫ 1
0 vit di. Condition (a) is satisfied, 

since the first order condition for k(ε̃) in (16) is

Et−1
d

dkit

f (kit , nit )
ν = FK(Kt ,Nt ),

which, due to the orthogonality of aggregate and idiosyncratic shocks immediately implies that

Et−1

{
Qt

Qt−1

(
d

dkit

ezt f (kit , nit )
ν + 1 − δ

)}
= ezt FK(Kt ,Nt ) + 1 − δ

1 + rt
= 1,

which is precisely the first order condition for firm i’s profit maximization problem (7). Condi-
tion (b) holds because the optimality conditions are the same as in the planning problem. The 
household’s intertemporal optimality condition is C−1

t = β
Qt

Qt+1
C−1

t+1 which is equivalent to the 

planner’s by construction of Qt . The intratemporal optimality condition is θN
ζ
t Ct = Wt which 

is again equivalent to the planner’s by construction of Wt . Finally, the constraints are equivalent 
since from (7) and (8), it follows that

Vt =
1∫

0

πit di +Et

Qt+1

Qt

Vt+1

= ezt F (K,tNt ) − WtNt + (1 − δ)Kt − Kt+1 +Et

Qt+1

Qt

Vt+1. (D.1)

Substituting out Vt from (14) using (D.1) yields the resource constraint. Conditions (c) and (d) 
hold by construction.

The other direction of the lemma follows these exact same steps in reverse. Defining F as in 
(16) means that by virtue of the first order conditions, it has to be the case that k(εit) = kit+1 and 
nit = n(εit−1, uit ), as well as Wt = FN(Kt , Nt), rt = ezt FK(Kt , Nt) − δ, and ezt F (K,tNt ) =∫

yitdi. The constraints and optimality conditions of the planning problem and the household 
optimization problem are then equivalent as before. This proves that {Ct, Kt+1, Nt } satisfies 15.

D.2. Business cycle accounting

To do the business cycle accounting exercise, we introduce in addition to the labor wedge also 
an investment wedge τx,t and government spending Gt . The extended model is described by the 
following four equations:

CtN
ζ
t = (1 − τn,t )e

zt FN(Kt ,Nt )

(1 + τx,t )C
−1
t = βEt

{
C−1

t+1

[
ezt+1FK(Kt+1,Nt+1) + (1 + τx,t+1)(1 − δ)

]}
Yt = Ct + Kt+1 − (1 − δ)Kt + Gt

Yt = ezt F (Kt ,Nt ).

We proceed similar to Chari et al. (2007) and pick a path for {τn,t , τx,t , Gt, ezt } to satisfy all four 
equations perfectly when evaluated at the realized paths of US aggregate data for output, hours, 
consumption, and investment from 1947 to 2016. Since our model does not feature growth, we 
first eliminate the growth trend from the data, detrending either linearly or applying a high-pass 
filter with a cutoff of 40 years. For the accounting exercise, we proceed in 4 steps. We begin by 
(i) conjecturing a VAR(1) process for the four exogenous shocks and solve for the equilibrium 
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mapping from shocks to endogenous variables. Next, (ii) we filter through the data using the 
equilibrium mapping, extracting a path for the four wedges so that the model matches the (de-
trended) data exactly. (iii) We then estimate a VAR(1) on the resulting path for the four wedges. 
(iv) Finally, we use the estimated process as our new conjecture in step (i) and repeat the exercise 
until the two processes converge.

D.3. Proof of Proposition 5

We only prove that the risk term increases when g is convexly increasing. All other cases can 
be reduced to this case by simple horizontal or vertical reflections of g. Hence, using the notation 
from Section 4.2, we need to prove that

Var{X0} = Var{X′
0} ⇒ Cov(X0, g(X0)) ≤ Cov(X′

0, g(X′
0)).

Upon replacing X0 by X and X′
0 by Y , this is the exact first step in the proof of Theorem 1

in Appendix A.3.
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