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Abstract
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In contrast to existing literature, we offer predictions that are robust across all possible

private information structures that agents may have. Our approach maps a DSGE

model with information-frictions into a parallel economy where deviations from full-

information are captured by time-varying wedges. We derive exact conditions that

ensure the consistency of these wedges with some information structure. We apply our

approach to an otherwise frictionless business cycle model where firms and households

have incomplete information. We show how assumptions about information interact

with the presence of idiosyncratic shocks to shape the potential for confidence-driven

fluctuations. For a realistic calibration, we find that correlated confidence regarding

idiosyncratic shocks (aka “sentiment shocks”) can account for up to 51 percent of

U.S. business cycle fluctuations.
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1 Introduction

What are the sources of aggregate fluctuations? A popular view is that business cycles are

caused by shocks to the confidence of consumers and firms. The view has been formalized

in recent business cycle models based on incomplete information (e.g., Lorenzoni, 2009; An-

geletos and La’O, 2013; Benhabib, Wang and Wen, 2015). Yet, few of these models have

been investigated quantitatively. At least in part, this is because the private information

structures governing people’s beliefs are hard to observe in the data or—as argued by Sims

(2003) and Woodford (2003)—may have no observable counterpart.

In this paper, we quantify the potential of confidence-driven business cycles using a novel

approach that bypasses the challenge of postulating ad-hoc information structures. The

approach takes the economic environment (technology, preferences, markets structure) as

given, but does not require a detailed specification of the information structure that governs

agents’ beliefs. Instead, we provide an “information-robust” characterization of all equilibria

that are possible within a given economic environment.

To do this, we map DSGE models with incomplete information into a “primal” economy

in which deviations from full information are summarized by wedges in agents’ equilibrium

expectations. We then develop necessary and sufficient conditions for the existence of an

information structure that is consistent with the expectation errors captured by these wedges.

Subject to these conditions, the primal economy is isomorphic to the incomplete-information

economy. Exploiting this equivalence, we derive a complete characterization of all equilibria

within a given economic environment independently from the information structure. The

characterization is quite general and applicable to a large class of linear rational expectation

models.

For a concrete application, we use our approach to ask: Under what conditions can

changes in confidence generate sizable fluctuations in aggregate economic activity? We ex-

amine this question in the context of an otherwise frictionless business cycle model driven by

shocks to aggregate productivity, along with shocks to local productivities and demand. We

allow for a general form of imperfect information, in which households and firms have access

to an arbitrary set of signals governing their beliefs about their own idiosyncratic shocks,

the aggregate state of the economy, what other agents believe, and so on. This includes the

possibility to learn from endogenous signals (e.g., Amador and Weill, 2010) along with many

others.

Whether the model generates aggregate fluctuations beyond those induced by aggregate

productivity shocks depends on its ability to generate expectation errors that are correlated

in the cross-section. There are two potential sources of such correlation. First, agents can be
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jointly optimistic or pessimistic regarding the aggregate state of productivity, as in Lorenzoni

(2009) or Angeletos and La’O (2010). Second, agents can be jointly optimistic or pessimistic

about their own idiosyncratic conditions, as in Angeletos and La’O (2013) or Benhabib, Wang

and Wen (2015), possibly accentuated by strategic uncertainty and higher-order beliefs. Both

channels are disciplined by the properties of the fundamental shocks to productivity and

demand. Our approach allows us to provide a general characterization of these restrictions

that does not hinge on a specific structural assumption about people’s information.

As a first result, we establish a novel theoretical benchmark for the case in which idiosyn-

cratic shocks are unrestricted by data. In this case, it has been previously demonstrated

that one can generate arbitrary macroeconomic volatility through confidence-driven fluctua-

tions if the idiosyncratic shocks are sufficiently volatile (Angeletos and La’O, 2013; Benhabib,

Wang and Wen, 2015). We go further, showing that confidence-driven fluctuations can in

principle generate any dynamic process for output and inflation, potentially bypassing all

cross-equation restrictions that obtain under full information, provided that agents do not

perfectly observe demand for their local goods when making production choices. If, on the

other hand, we impose some minimal requirements on the information of agents, we obtain

non-trivial cross-equation restrictions. For example, when local demand is perfectly observed

by firms, inflation must be procyclical regardless of what else firms might observe.

For our quantitative analysis, we use existing micro-data estimates (Foster, Haltiwanger

and Syverson, 2008) to calibrate the processes for idiosyncratic productivity and demand.

We then compute global upper bounds on confidence-induced output fluctuations, their per-

sistence, and the contemporaneous correlation with inflation (Figure 1 in Section 5). For an

empirically plausible calibration, the volatility-frontier for confidence-induced output fluctu-

ations is hump-shaped in aggregate persistence and is decreasing in the contemporaneous cor-

relation with inflation. For an aggregate persistence and inflation-cyclicality consistent with

U.S. data, the maximal one-step-ahead volatility of confidence-induced fluctuations is .011

(≈ 90 percent of the empirical one-step-ahead volatility of the U.S. output gap). We demon-

strate that the ability to generate sizable macro-volatility through confidence-fluctuations

hinges on the volatility of idiosyncratic demand shocks, whereas shocks to productivity play

a somewhat dispensable role.

Finally, we explore the degree to which confidence-driven fluctuations are consistent with

U.S. business cycle data. To this end, we estimate a prototype wedge-economy similar to

the one in Chari, Kehoe and McGrattan (2007), which captures the U.S. business cycle by

construction. Our theoretical results permit us to partition the estimated wedges into an

informational component, which can be microfounded through incomplete information, and
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a non-informational residual. We find that, in principle, confidence-fluctuations can account

for a large portion of the U.S. business cycle that remains unexplained after conditioning

on productivity shocks. The ability of the model to generate sizable aggregate confidence-

fluctuations hinges, however, crucially on the presumption that firms do not know their

idiosyncratic product demands while making their production plans: If local demand is per-

fectly observed, at most 3 percent of observed output fluctuations can be accounted for by

any type of confidence. By contrast, if local demand is not observed but aggregate produc-

tivity is, up to 51 percent of output fluctuations can be explained by correlated confidence

regarding local conditions.

The methodology developed in this paper is closely related to Bergemann and Morris

(2013, 2016) and Bergemann, Heumann and Morris (2014). These papers demonstrate the

equivalence between Bayes equilibria in games with incomplete information and Bayes cor-

related equilibria. The approach developed in this paper is similar in that it also demon-

strates the equivalence between a class of incomplete-information models with another class

of full-information models. It is more general, however, as it is not limited to static game

environments, but equally applies to dynamic market economies, which is crucial for an ap-

plication to business cycles. Closely related to our application to dynamic macroeconomic

models, Passadore and Xandri (2018) develop robust predictions in dynamic policy games

with an application to sovereign debt.

On the applied side, our analysis relates to a recent literature on confidence-driven busi-

ness cycles. While the literature is mostly theoretical, there are now a few studies with

a quantitative focus. In particular, Huo and Takayama (2015a) quantify a version of An-

geletos and La’O (2013), and Blanchard, L’Huillier and Lorenzoni (2013) estimate a version

of Lorenzoni (2009).1 Our approach is distinguished by our general formulation of incom-

plete information that does not require an ex-ante stand on which agents are affected by

information-frictions, how information is shared in the cross-section of agents, or any other

parametric properties of the information structure.

The objective of this paper is also closely related to Angeletos, Collard and Dellas (2017).

Departing from the assumption of rational expectations, those authors develop a tractable

framework in which agents’ expectations regarding the beliefs of other agents are subject

to reduced-form “confidence shocks”. They show that confidence shocks can account for a

significant portion of the U.S. business cycle, but abstract from the question whether those

1See also Melosi (2014, 2016) for an estimation of a variant of Woodford (2003), and Maćkowiak and
Wiederholt (2015) for plausible calibration of a particular DSGE model with rational inattention. In these
works, incomplete information alternates the propagation of fundamental shocks (productivity, monetary),
but there are no confidence-driven fluctuations.
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shocks can by microfounded by some information structure. Our approach is complimentary

in that we characterize the restrictions on confidence-driven fluctuations imposed by rational

expectations.

Our approach is also useful for reducing the computational burden of solving (and estimat-

ing) business cycle models with incomplete information. While the incomplete-information

version of our economy is hard to solve, the corresponding primal economy permits a sim-

ple aggregate representation, in which aggregate wedges capture the average deviations from

incomplete-information in the cross-section of agents. Conditional on these wedges, which are

constrained by the theoretical restrictions characterized by our approach, the primal economy

can be solved using standard tools developed for full-information models. In this ability to

reduce the computational burden of solving (and estimating) incomplete information models,

our paper also relates to Rondina and Walker (2014), Acharya (2013), Huo and Takayama

(2015b) and Acharya, Benhabib and Huo (2017), who use frequency-domain techniques to

obtain analytical solutions in certain models, and Nimark (2009) who explores the asymp-

totic accuracy of a finite-state approximation approach to a class of dispersed information

models.

The rest of the paper is organized as follows. Section 2 sets up the model economy.

Section 3 develops the information-robust characterization, and Section 4 applies it to derive

predictions about aggregate fluctuations. Section 5 calibrates the model and provides the

quantitative analysis. Section 6 concludes. A general statement and proof of our main

representation result is contained in Appendix A.

2 The Model Economy

2.1 Economic Environment

The model is a standard RBC economy without capital, augmented with imperfect informa-

tion. Households and firms are located on a continuum of islands, indexed by i ∈ [0, 1]. On

each island, a representative household interacts with a representative firm in a local labor

market. Firms use the labor provided by households to produce differentiated intermediate

goods, which are aggregated by a competitive final goods sector located on the mainland.

There are no subperiods; all markets at date t operate simultaneously.
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Households Preferences on island i are given by

E

{
∞∑
τ=0

βτU(Ci,t+τ , Ni,t+τ ) | Ii,t

}
,

where β ∈ (0, 1) is the discount factor, Ni,t is hours worked, Ci,t is final good consumption,

and Ii,t is the set of information available in island i at time t. The utility flow U is given by

U(C,N) = logC − 1

1 + ζ
N1+ζ ,

where ζ ≥ 0 is the inverse of the Frisch elasticity of labor supply. The household’s budget

constraint is

PtCi,t +QtBi,t ≤ Wi,tNi,t +Bi,t−1 +Di,t,

where Pt is the price of the final good, Qt is the nominal price of a riskless one-period bond,

Bi,t are local bond holdings, Wi,t are local wage rates, and Di,t are profits of the local firm.2

Bonds are in zero net supply, so market clearing requires
∫ 1

0
Bi,t di = 0. No other financial

assets can be traded across islands, which implies that households are exposed to idiosyncratic

income risk.

Intermediate-goods producers Each good i is produced by a monopolistically compet-

itive firm with access to a linear production technology,

Yi,t = Ai,tNi,t. (1)

Firms choose Ni,t to maximize expected profits, E[Pi,tYi,t −Wi,tNi,t| Ii,t], subject to an in-

verse demand curve specified below. The wage rate Wi,t is determined competitively.3 The

productivity Ai,t consists of an aggregate and an island-specific component,

logAi,t = logAt + ∆ai,t,

2Following Maćkowiak and Wiederholt (2015), we assume that bond positions adjust to clear the budget
constraint independently of the information available to households.

3Formally, firm i is representative of a continuum of firms, j ∈ [0, 1], competing in the local labor market.
Each of these firms produces a separate variety (i, j) that is aggregated to Yi,t using the technology Yi,t =

(
∫ 1

0
Y

1−1/η
ij,t dj)η/(η−1) where η matches the elasticity of substitution across “island-varieties” specified in the

final good technology below. Clearly, the setting collapses to the one in the main text where Yi,t is produced
by a representative firm i that is competitive in the local labor market and faces isoelastic demand from the
final good sector with elasticity −η.
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where the aggregate component follows a random walk process

logAt = logAt−1 + εt.

The innovation εt is i.i.d. across time with zero mean and constant variance. The island-

specific component ∆ai,t follows a time-invariant, stationary random process that is i.i.d. across

islands and is normalized so that
∫ 1

0
∆ai,t di = 0.

Final-good sector A competitive final-goods sector aggregates intermediate input goods

i ∈ [0, 1], using the technology

Yt =

(∫ 1

0

Zi,tY
η−1
η

i,t di

) η
η−1

,

where η > 1 is the elasticity of substitution among input varieties, Yi,t denotes the input

of intermediate good i at time t, and Zi,t is an island-specific demand shifter following a

time-invariant, stationary process that is i.i.d. across islands and satisfies
∫ 1

0
log(Zi,t) di = 0.

Profit maximization yields the inverse input demands, given by

Pi,t =

(
Yi,t
Yt

)−1/η

Zi,tPt, (2)

where the aggregate price index Pt is defined by

Pt =

(∫ 1

0

Zη
i,tP

1−η
i,t di

) 1
1−η

.

Monetary policy We close the model by specifying a simple interest rate rule, pinning

down the equilibrium rate of inflation, πt ≡ log(Pt/Pt−1). Specifically, we assume that the

central bank sets nominal bond prices such that

it = φπt, (3)

where φ > 1 and it = − log(Qt).
4

4The rule also contains a constant intercept ensuring consistency with the natural rate at the zero-inflation
steady state. The term is omitted since it drops out after we log-linearize the model below.
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2.2 Information Structure

At the core of this paper is an information-robust characterization of equilibria. Throughout,

we maintain the assumption of rational expectations, so that conditional on an information

set, all expectations are formed using Bayes law. The main novelty is that we do not take a

parametric stand on information. Instead we allow for all information structures subject to

the following three restrictions.

Assumption 1 (Information bounds). Θi,t ⊆ Ii,t ⊆ I∗t .

Assumption 1 defines a lower and an upper bound on information available in island i at

date t. The upper bound, I∗t , defines the history of all variables that are realized at date t,

so that agents cannot learn more than what is potentially knowable under full information.5

The lower bound, Θi,t, includes at least the actions of the agents living in island i. Apart from

this basic requirement of rationality, Θi,t can be specified arbitrarily, allowing the researcher

to explore a variety of informational assumptions. As a baseline, we adopt the following

specification for Θi,t:

Θbaseline
i,t = {Ai,t, Ci,t, Ni,t, Yi,t,Wi,t, I∗t−h̄−1} ∪Θbaseline

i,t−1 . (4)

Here we assume that (i) households and firms observe local productivities (and hence outputs)

in addition to their own actions and wages, and that (ii) all agents eventually learn the truth

at some horizon h̄+ 1 ≥ 0.6

We note that the minimal informational need not necessarily include the full set of publicly

available information at time t, because agents may not be aware of or use such information

in making their decisions, as is generically the case in the literature on rational inattention

(e.g., Sims, 2003; Woodford, 2003). In Sections 4.2 and 5, we contrast the baseline with

alternative specifications for Θi,t.

Next, we make the usual assumption that all agents perfectly recall past information.

Assumption 2 (Recursiveness). Ii,t−1 ⊆ Ii,t.

Finally, we impose ex-ante symmetry across islands and time to streamline the exposition.

This does not restrict behavior of the aggregate economy.

5Notice that which variables are realized at date t is to some extent definitional. In particular, I∗t could
contain future innovations if they are realized at date t as in the news literature. In our application, we
abstract from this form of news, assuming all innovations to (Ai,t, Zi,t) realize at date t.

6For now, we do not impose that firms perfectly observe the inverse demand Pi,t at the time of making
their production choice Yi,t. As discussed below, this does not interfere with market clearing. The case where
Pi,t ∈ Θi,t is discussed in Section 4.2.2.
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Assumption 3 (Ex-ante symmetry). The unconditional distribution over (Ii,t, Ai,t, Zi,t) is

identical across all i and t.

Comment on prices and market clearing It is worth noting that our minimal as-

sumptions do not impose that agents perfectly observe prices, which would be unnecessary

restrictive.7 This does not mean, however, that agents are completely ignorant of prices,

which would prevent prices from clearing markets. To the contrary, imposing market clear-

ing in the parallel primal economy, which we describe in the next section, ensures that

agents’ equilibrium supply and demand decisions are as responsive to price changes as mar-

ket clearing requires. As a result, our approach allows us to avoid specifying the details of

the signals which agents use to learn about prices without compromising market clearing (see

Appendix E for details).

2.3 Equilibrium Conditions

We work with a log-linear approximation to the model around the balanced growth path

of the economy with no heterogeneity and full information. Lower-case letters denote log-

deviations of a variable from the stochastic steady state where yi,t = at for all i and πt = 0.

The households’ Euler equation is given by

ci,t = E[ci,t+1 − φπt + πt+1 | Ii,t]. (5)

Combining firms’ demand for labor with households’ supply, local labor market clearing

requires

yi,t = ξ E[xi,t | Ii,t] + ai,t, (6)

where xi,t ≡ yi,t − ci,t + pi,t − pt is the nominal trade-balance on island i, and ξ ≡ 1/(ζ + 1).

The linearized price index pt is given by pt =
∫ 1

0
pi,t di. The linearized demand relation and

budget constraint take the form

pi,t = η−1(yt − yi,t) + zi,t + pt (7)

7Limiting the ability of agents to learn from prices most importantly limits their ability to learn about the
aggregate state. Lorenzoni (2009) argues that, in practice, learning about aggregates is likely to be impaired
by a large number of shocks, model misspecification, and the presence of structural breaks. One specific
approach to capture these effects within a simple model like ours would be to decentralize markets so that
local prices no longer reflect aggregate states (e.g., Lorenzoni, 2009; Angeletos and La’O, 2013; Chahrour and
Ulbricht, 2017). An alternative interpretation is offered by the rational inattention literature (e.g., Maćkowiak
and Wiederholt, 2015; Vives and Yang, 2017) where information sets do not reflect all the information that
is in principle attainable from prices due to finite processing constraints.
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and

βbi,t = bi,t−1 + xi,t, (8)

where bi,t ≡ Bi,t/(PtCi,t) is in levels rather than logs because Bi,t can take negative values.

Given a process for fundamentals and information {ai,t, zi,t, Ii,t}, an equilibrium of the model

is a set of processes {ci,t, yi,t, bi,t, pi,t} and {yt, πt} that are consistent with (5)–(8), with

Bayesian updating, and with market clearing for goods,

yt =

∫ 1

0

yi,t di =

∫ 1

0

ci,t di. (9)

(As usual, market clearing for bonds is implied by (8) and (9).)

3 Information-Robust Characterization

In this section, we present the methodological innovation in this paper. We begin by defining

a fictitious full-information version of our model in which all expectation errors are treated

as exogenous wedges. This parallel “wedge economy" can be solved using standard full-

information tools. We then derive necessary and sufficient conditions on these wedges such

that they can be supported as expectation errors in an equilibrium of the incomplete in-

formation economy. The set of equilibria in the fictitious wedge-economy satisfying these

conditions corresponds to the set of all possible equilibria in the incomplete information

economy. Our equivalence result thus provides a tractable method of characterizing all

incomplete-information equilibria, without making parametric assumptions about the pri-

vate information structures of agents.

3.1 Primal Representation

Let Et[·] ≡ E[·|I∗t ] denote the full-information expectations operator. To arrive at the “pri-

mal” analogue of the economy characterized in Section 2.3, we replace all expectation oper-

ators E[·|Ii,t] with Et[·] + τi,t, where {τi,t} are treated as exogenous “expectation” wedges.

Specifically, in our case, we replace equations (5) and (6) with the corresponding primal
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equations:8

ci,t = Et[
(
ci,t+1 − τ ci,t+1

)
− φπt + πt+1] + τ ci,t (10)

yi,t = ξ(xi,t + τxi,t) + ai,t. (11)

Here τi,t = (τ ci,t, τ
x
i,t)
′ is two-dimensional as there are two expectation operators per infor-

mation set. The wedges τ ci,t and τxi,t have the interpretation of prediction errors, relative to

full-information, regarding household i’s consumption target and island i’s terms-of-trade,

pi,t − pt, respectively.9 Note that both wedges are defined relative to the full-information

target that obtains taking as given the behavior of the rest of the economy (i.e., given the

expectation errors made on other islands).

3.2 Characterization Theorem

We now characterize implementability of the expectation wedges. Let F denote a stochastic

process for the fundamentals Ft ≡ {dai,t, zi,t}i∈[0,1], where dai,t ≡ ai,t − ai,t−1; let T denote

a stochastic process for the expectation wedges Tt ≡ {τ ci,t, τxi,t}i∈[0,1]; and let E(F , T ) denote

the set of equilibria in the primal economy induced by (F , T ). We assume the equilibria in

E(F , T ) have a stationary Gaussian distribution that is ex-ante symmetric across islands.10

The following theorem states the implementation result.

Theorem 1. Fix F , T and E ∈ E(F , T ). Then there exists an information structure consis-

tent with Assumptions 1–3 that implements T , and hence E, in the incomplete-information

economy if and only if (i) E[τi,t] = 0 and (ii)

E[τi,tθ] = 0 for all θ ∈ Θi,t (12)

hold for all i and t.

The theorem gives two conditions that are jointly necessary and sufficient for T to be

implemented by some information structure. Condition (i) is simply the rationality require-

8Here τ ci,t is specified after rewriting (5) in its non-recursive form. With this normalization, τ ci,t defines
the gap relative to the optimal level of consumption that household i would choose if it had full information
at t and all future dates.

9Notice that as yi,t, ci,t ∈ Θi,t, all uncertainty about xi,t can be attributed to the terms-of-trade, pi,t− pt.
10These assumptions can be relaxed. First, in many cases, an appropriate transformation can be used to

induce stationarity in the primal economy. E.g., in our case, it suffices to define the primal economy in first-
differences to ensure stationarity of E as long as T is stationary. Second, while we assume E to be Gaussian,
the assumption is not needed when one is only interested in implementing the auto-covariance structure of
Et. Finally, ex-ante symmetry is imposed purely for notational convenience. See our general formulation in
Appendix A for an extension to non-symmetric cases.
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ment that an agent’s beliefs cannot be perpetually biased. Condition (ii) is an orthogonality

requirement between the expectation wedges and the corresponding lower bounds on infor-

mation Θi,t. The necessity of this restriction is the familiar result that expectation errors

must be orthogonal to all available information. The novel part of our result is the suffi-

ciency of this condition. For any E ∈ E(F , T ) with E[Tt] = 0, we can always construct an

information structure that implements the joint process E as long as it satisfies (12).

The following example illustrates this in a simple case. The general proof is given in

Appendix A and applies to arbitrary linear rational expectation models.

Simple example Consider an economy defined by a single equilibrium condition, yt =

E[at|It], where the fundamental at satisfies E[at] = 0, and let Θt = {yt−s}s≥0. The primal

economy is given by

yt = at + τt. (13)

Let Et = (yt, at, τt) be a stationary Gaussian process satisfying (13). Theorem 1 states that

for a given process Ft = at, Et is implementable by some {It}, satisfying yt ∈ It for all t, if

and only if (i) E[τt] = 0 and (ii) E[τtyt−s] = 0 for all s ≥ 0. The necessity of conditions (i)

and (ii) is immediate, since optimal inference requires that expectation errors are orthogonal

to variables in the information set and are unpredictable.

To see why the conditions are also sufficient, suppose that It = {ωt−s}s≥0 where ωt =

at + τt. That is, each period, the agent receives a new signal ωt that has the same joint

distribution over (ωt, Et) as the equilibrium “belief” yt that we wish to implement. Projecting

at onto yt ≡ {yt−s}s≥0, we have

E[at|It] = Cov(at, y
t)[Var(yt)]−1yt. (14)

Notice that

Cov(yt, y
t) =

[
1 0 0 · · ·

]
Var(yt). (15)

Further notice that (13) in combination with condition (ii) gives Cov(at, y
t) = Cov(yt −

τt, y
t) = Cov(yt, y

t). We can thus use (15) to substitute out Cov(at, y
t) in (14) to get

E[at|It] =
[
1 0 0 · · ·

]
Var(yt)[Var(yt)]−1yt = yt.

We conclude that as long as conditions (i) and (ii) hold, there exists a simple information-

structure {It} that implements Tt. Intuitively, observing the equilibrium expectation yt is a

sufficient statistic for forming E[at|It], giving us a simple means of implementing Tt.
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Generalization to arbitrary linear economies To streamline the exposition, we have

presented Theorem 1 in the context of a specific model economy. However, the proof of

the theorem is generic and applies to virtually any linear rational expectations model fea-

tured in the literature. Appendix A states the theorem for a general class of linear rational

expectations models. The generalized model allows for an arbitrary number of equilibrium

conditions involving an arbitrary mix of atomistic and aggregate agents with potentially

different decisions, shocks, state variables and information sets.

4 Inference about the Aggregate Economy

In this section, we explore how the theoretical restrictions of Theorem 1 translate into restric-

tions on the behavior of the aggregate economy. In a preliminary step, Section 4.1 derives

an aggregate representation of the primal economy, which can be fully described in terms of

“macro” wedges τ ct =
∫ 1

0
τ ci,t di and τxt =

∫ 1

0
τxi,t di. Section 4.2 then maps the restrictions on

the “micro” wedges in Theorem 1 to restrictions on the macro wedges that derive from their

informational foundation.

4.1 Aggregation and Equilibrium in the Primal Economy

We begin with an explicit characterization of equilibrium in the aggregate primal economy.

Unlike the aggregate incomplete-information economy, which requires keeping track of the

cross-sectional distribution of beliefs, the primal economy permits a simple aggregate repre-

sentation. Integrating over (10) and (11), we have

ŷt = Et[ŷt+1 − τ ct+1 − φπt + πt+1] + τ ct (16)

ŷt = ξτxt (17)

where ŷt ≡ yt − at is the level of output relative to its (full-information) potential.

Equations (16) and (17) define the aggregate dynamics in the primal economy. Common

prediction errors in the Euler equation, captured by τ ct , show up as an Euler equation wedge.

Similarly, the common prediction errors regarding the terms-of-trade, captured by τxt , corre-

spond to the usual definition of the labor wedge. Note that τ ct and τxt are the sole drivers of

the aggregate output gap and inflation. If all agents had full information (τ ct = τxt = 0), the

aggregate economy would be in its stochastic steady state where output reaches its potential

in every period (yt = at) and inflation is zero.

In general, a solution for endogenous variables as a function of the joint process τt ≡

12



(τ ct , τ
x
t )′ can be obtained using standard numerical tools. In our case, a closed-form solution

is also available. Substituting out ŷt in (16), πt is characterized by the prediction formula

πt = φ−1Et[ξdτxt+1 − dτ ct+1 + πt+1]. (18)

Following Hansen and Sargent (1980, 1981), we obtain an explicit solution for inflation, stated

in the following.

Lemma 1. Let τt = A(L)ut , where A(L) is a square-summable lag polynomial in non-

negative powers of L and the innovations ut are orthogonal white noise. Then there exists a

unique stationary equilibrium process for (ŷt, πt), given by

ŷt =
[
0 ξ

]
A(L)ut (19)

and

πt =
[
−1 ξ

] (1− L)A(L)− (1− φ−1)A(φ−1)

φL− 1
ut. (20)

4.2 Feasible Dynamics of Aggregate Wedges

To characterize feasible dynamics of the aggregate economy, we now explore how the restric-

tions in Theorem 1 constrain the fluctuations of the aggregate wedges τxt and τ ct . We begin

with the case in which Θi,t is given by our baseline specification (4). Alternative specifications

for Θi,t are considered in Sections 4.2.2–4.2.4.

4.2.1 Baseline Θi,t

To begin, observe that the information set in (4) is informationally equivalent to

Si,t = {dci,s, dyi,s, dai,s}ts=t−h̄ ∪ I
∗
t−h̄−1.

Here we have used that (i) ni,t and wi,t are linear combinations of (ci,t, yi,t, ai,t) and are there-

fore informationally redundant; and (ii) that for any finite horizon h̄, observing the sequence

of differences {dci,s, dyi,s, dai,s}ts=t−h̄ in addition to I∗
t−h̄ contains the same information as the

corresponding sequence of levels.

To proceed, define ∆τi,t ≡ τi,t−τt as the idiosyncratic portions of the expectations wedges.

Similarly, define (∆ci,t,∆yi,t) as the idiosyncratic deviations from aggregate output. By con-

struction the “Delta”-component of any variable is orthogonal to any aggregate variable.

Hence, for any two variables xi,t and yi,t, we have Cov[xi,t, yi,t] = Cov[xt, yt]+Cov[∆xi,t,∆yi,t].
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The orthogonality conditions between the wedges (τ ci,t, τ
x
i,t) and minimal information observ-

ables (dci,t, dyi,t, dai,t) can then be written as:

Cov[τt, (dyt−s, dyt−s, εt−s)] =

− Cov[∆τi,t, (∆dci,t−s,∆dyi,t−s,∆dai,t−s)] for all s ≥ 0. (21)

Condition (21) requires that any aggregate co-movement on the left-hand side is exactly

offset by corresponding “Delta” co-movements on the right-hand side. Our results from the

previous section imply that dyt can be written as a function of (τxt , εt). Accordingly, the

left-hand side is a function of aggregate wedges and productivity shocks only.

To make further progress, we now solve for ∆dci,t and ∆dyi,t on the right-hand side of

(21). Subtracting yt from both sides of (10) and (11), we obtain

∆ci,t = Et[∆ci,t+1 −∆τ ci,t+1] + ∆τ ci,t (22)

∆yi,t = ξ(xi,t + ∆τxi,t) + ∆ai,t. (23)

Together with (7) and (8), conditions (22) and (23) define a (fictitious) small open economy,

which pins down the behavior of ∆dci,t and ∆dyi,t without need to reference aggregate vari-

ables in the economy. In Appendix C.2, we solve the “Delta-economy” in closed form, deriving

law of motions for ∆dci,t and ∆dyi,t as functions of Delta-fundamentals fi,t ≡ (∆ai,t, zi,t) and

Delta-wedges ∆τi,t. Using this solution to substitute out (∆dci,t,∆dyi,t) on the right-hand

side of (21), we obtain the following implementation condition for the macro wedges.

Lemma 2. Fix a (zero mean) MA(h̄) process τ for (τ ct , τ
x
t ) and set Θi,t as in (4). Then

there exists an information structure consistent with Assumptions 1–3 that implements τ in

the incomplete-information economy, if and only if there exists a (zero mean) MA(h̄) process

∆τ such that

Γs(τ, ε) = −Λs(∆τ, f) for all s ≥ 0, (24)

where

Γs(τ, ε) ≡ Cov[τt, (dyt−s, dyt−s, εt−s)]

Λs(∆τ, f) ≡ Cov[∆τi,t, (∆dci,t−s,∆dyi,t−s,∆dai,t−s)].

The mappings (τ, ε) 7→ Γs and (∆τ, f) 7→ Λs are available in closed-form, stated in (51) and

(61) in the appendix.

Lemma 2 provides a general tool to verify implementability of any aggregate wedge pro-
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cess τt under various assumptions about the fundamentals {ai,t, zi,t}. Specifically, τ is imple-

mentable if and only if it has a finite MA(h̄) representation11 and the resulting covariance

matrix Γs(τ, ε) is consistent with the Delta-moments Λs(∆τ, f).

Simple example (continued) To develop an intuition how Theorem 1 maps assumptions

on fundamentals to restrictions on expectation wedges, consider again the simple example

from above. Theorem 1 requires Cov[τt, yt−s] = 0 for all s ≥ 0 or, after substituting for

yt = at + τt,

Cov[τt, τt−s + at−s] = 0 for all s ≥ 0. (25)

Equation (25) is the simple economy’s counterpart to (21). Here the right-hand side is zero,

due to the absence of cross-island heterogeneity.

Equation (25) makes specific predictions about the covariance structure between τt and

at. In particular, evaluating (25) at s = 0 and noting that by the Cauchy-Schwarz inequality

Cov[at, τt] ≥ −
√

Var[at]Var[τt], it follows that the volatility of the expectation wedges is

bounded by the fundamental volatility:

Var[τt] ≤ Var[at].

Intuitively, the variance of expectation errors is bounded above by the variance of the forecast

target at. In the extreme where at is constant, there is no scope for confusion, so that τt = 0

in all possible equilibria.

Unrestricted micro-shock benchmark The simple example illuminates how the ana-

logue to Lemma 2 entails restrictions on the volatility and covariance of expectation wedges.

Compared to the example, a key difference in the model is the presence of cross-island het-

erogeneity (Var[fi,t] > 0), which can be used to support aggregate fluctuations, even if there

are no aggregate shocks. This is because the optimism and pessimism of agents regarding

local shocks can be correlated across islands even though the underlying fundamentals are

purely idiosyncratic (e.g., Angeletos and La’O, 2013; Benhabib, Wang and Wen, 2015).

As a benchmark, we now review what dynamics are possible if fi,t is treated as a degree of

freedom. The case where fi,t is instead fixed at a realistic calibration is studied in Section 5.

By construction, the chosen process for fi,t has no direct impact on the aggregate economy

and does not affect the aggregate equilibrium under full information.

11The restriction to finite MA processes arises, because I∗t−h−1 ⊆ Θi,t under our baseline specification for
Θi,t. Since all innovation to τi,t are part of Θi,t, the orthogonality requirement then trivially implies that τi,t
has to have a finite MA representation of order h̄.

15



Proposition 1. Fix a (zero mean) MA(h̄) process τ for (τ ct , τ
x
t ) and set Θi,t as in (4). Then

for any aggregate productivity process, a, there exists an idiosyncratic process, f , such that τ

can be implemented in the incomplete information economy.

The proposition implies that expectation wedges, supported by correlated optimism and

pessimism (across islands), can in principle generate any joint process in (ŷt, πt). This gener-

alizes Angeletos and La’O (2013) and Benhabib, Wang and Wen (2015), where expectation

errors about local shocks can generate arbitrarily large output variance if the local shocks are

sufficiently volatile. Proposition 1 shows that, beyond simply unconditional variances, “sen-

timent” fluctuations can implement arbitrary processes for τt and, by implication, arbitrary

autocorrelation structures among the aggregate variables, potentially bypassing all cross-

equation restrictions that emerge under full information.12 Intuitively, expectation errors

can easily be correlated, both because information can be correlated between households and

firms and because expectation errors by households generally affect both their consumption

and labor supply.

4.2.2 No Demand Uncertainty

Under the baseline specification for Θi,t, we make no assumptions regarding how firms and

households on island i learn about the inverse demand for the local good, captured by pi,t.

We now consider the case where pi,t is perfectly observed, so that the inhabitants of island i

face no uncertainty about the demand for the local export variety i when production plans

are made. That is, information is bounded below by

Θi,t = {pi,t−s}s≥0 ∪Θbaseline
i,t . (26)

Because local outputs are known, the information contained in dpi,t is equivalent to

dpi,t + η−1dyi,t = πt + θ−1dyt + zi,t. (27)

Following similar steps as before, we obtain one additional constraint, which in conjunction

with Lemma 2 characterizes the implementation frontier when pi,t ∈ Θi,t.

12In two related contributions, Angeletos, Collard and Dellas (2017) and Ilut and Saijo (2018) illustrate
how incomplete information may introduce specific comovement patterns in various variables that differ
from full information. However, in contrast to the result in Proposition 1, these comovement patterns are
restricted by the specifics of the information-structures considered in these papers, translating into non-trivial
cross-equation restrictions.
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Lemma 3. Fix a (zero mean) MA(h̄) process τ for (τ ct , τ
x
t ) and set Θi,t as in (26). Then

there exists an information structure consistent with Assumptions 1–3 that implements τ in

the incomplete-information economy, if and only if there exists a (zero mean) MA(h̄) process

∆τ such that

Cov[τt, πt−s + η−1dyt−s] = −Cov[∆τi,t, zi,t−s] for all s ≥ 0. (28)

holds in addition to (24).

Substituting (28) to (24) for s = 0, we obtain after some algebra the following restriction

on Var[ŷt] (see Appendix C.9 for a derivation):

√
Var[ŷt] ≤ ξ

Corr[ŷt, πt]

1− Corr[ŷt, ŷt−1]

√
Var[πt]. (29)

Equation (29) restricts the volatility of ŷt relative to πt as a function of its autocorrelation

and the contemporaneous correlation with πt. The following proposition is an immediate

corollary.

Proposition 2. Set Θi,t as in (26). Then a process τ for (τ ct , τ
x
t ) with Var[τxt ] > 0 is imple-

mentable in the incomplete information economy only if it implies inflation to be procyclical

(Corr[ŷt, πt] > 0).

To see the logic behind this proposition, recall that

τxt ≡
∫ 1

0

(E[pi,t − pt|Ii,t]− [pi,t − pt]) di = Ēt[pi,t − pt].

To generate an output gap, agents have to make correlated errors regarding the terms of

trade, either due to correlated optimism/pessimism regarding the (inverse) demand for the

local product, Ēt[pi,t] 6= pt, as in Benhabib, Wang and Wen (2015) or through a nominal

misconception, Ēt[pt] 6= pt, as in, e.g., Lucas (1972, 1973). Imposing pi,t ∈ Θi,t rules out the

first possibility, yielding

τxt = pt − Ēt[pt].

Because E[pt|Ii,t] cannot consistently over-predict pt under rational expectations, it follows

that ŷt = ξτxt > 0 is more likely whenever prices are growing, implying that inflation must

be procyclical.
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4.2.3 Public Signals

Another commonly considered case is that agents learn from public signals about aggregate

variables. In general, for any common statistic st, Theorem 1 requires Cov[τi,t, st] = 0. As

Cov[τi,t, st] = Cov[τt, st], it immediately follows that for any st ∈ Θi,t, it must hold that

Cov[τt, st] = 0. Augmented by the additional orthogonality requirement, the characteriza-

tions in Lemmas 2 and 3 remain fully valid. The following lemma formalizes the result for the

baseline case; analog results hold for the alternatives considered above and in Appendix B.

Lemma 4. Fix a (zero mean) MA(h̄) process τ for (τ ct , τ
x
t ) and set

Θi,t = {st−s}s≥0 ∪Θbaseline
i,t .

Then there exists an information structure consistent with Assumptions 1–3 that implements

τ in the incomplete-information economy, if and only if

Cov[τt, st−s] = 0 for all s ≥ 0

and there exists a (zero mean) MA(h̄) process ∆τ such that (24) holds.

For instance, let st = at. Then the lemma implies that the aggregate response to pro-

ductivity shocks must be exactly that of the full information economy. Apart from this

restriction, any aggregate wedge process consistent with Lemma 2 continues to be imple-

mentable with at known.

For another illustration, consider the particularly stark case where st = (ut−h, εt−h) with

ut being the innovations to τt as defined in Lemma 1. Here the aggregate state is perfectly

revealed to agents at some lag h ≤ h̄. In this case, Lemma 4 requires Cov[ŷt, ŷt−s] =

Cov[ŷt, πt−s] = Cov[ŷt, at−s] = 0 for all s ≥ h, restricting the autocorrelation of expectation-

driven fluctuations within an horizon of h periods. The result generalizes a similar result

in Acharya, Benhabib and Huo (2017), which bounds the persistence of a class of sentiment

shocks.13

13While the strong conclusions of Lemma 4 may suggest a limited scope of expectation-driven fluctuations
in macro variables, such conclusion would likely be premature as information that is in principle publicly
available may not be used much by private agents for the purpose of information extraction (e.g, Sims, 2003;
Maćkowiak and Wiederholt, 2009). As argued by Woodford (2003), when looking at the information that is
actually used by agents to form their beliefs, agents may never share common knowledge—even about signals
that have been in the public domain indefinitely.
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4.2.4 Heterogeneous Information Between Households and Firms

To streamline the exposition, we have so far imposed common knowledge among households

and firms within each island. While this assumption is common in the literature, it is arguably

unrealistic. In our quantitative exploration, we explore the differential role that household

and firm-side errors play for supporting aggregate fluctuations, letting households and firms

base their decisions on distinct information sets, Ihi,t and Ifi,t, bounded below by

Θh
i,t = {Ci,t, Ni,t,Wi,t, I∗t−h̄} ∪Θh

i,t (30)

Θf
i,t = {Ai,t, Ni,t, Yi,t,Wi,t, I∗t−h̄} ∪Θf

i,t. (31)

As the theoretical characterization is completely parallel to the one above, we defer the details

to Appendix B. Specifically, Lemmas 5 and 6 in the appendix provide characterizations in

analog to Lemmas 2 and 3, and Propositions 3 and 4 generalize the results in Propositions 1

and 2.

5 Quantitative Analysis

We now study the quantitative potential for confidence-driven business cycles under an empir-

ically plausible calibration of the fundamental micro-shocks. We conduct two main exercises.

First, we compute global upper bounds on confidence-induced output fluctuations, their per-

sistence, and the contemporaneous correlation with inflation. Second, we look at a specific

process for the macro wedges, estimated to fit U.S. business cycle data, and ask to what

degree those fluctuations are consistent with a theory of incomplete information.

5.1 Parametrization

We interpret one period as a quarter. The discount factor β is set to 0.99. The inverse Frisch

elasticity ζ is set to 0.5, the elasticity of substitution between input varieties η is set to 7.5.

The monetary policy parameter φ is set to 1.5. These values are within the range typically

used by the literature.

Next, we set the incomplete information horizon to h̄ = 14 quarters. While we do not

have strong priors regarding h̄, our choice is consistent with the horizon at which Coibion

and Gorodnichenko (2014) find a significant response in professional forecasters’ expectation

errors to various fundamental and nonfundamental shocks. Later, we also explore the sensi-

tivity of our results to h̄, and demonstrate that once the horizon h̄ exceeds five periods its
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impact on our results is modest.

It remains to choose processes for the island-specific productivities and demand. We

separate local productivities into a permanent component, µi,t, and a temporary component,

νi,t,

∆ai,t = µi,t + νi,t,

where νi,t is i.i.d. with zero mean and variance σ2
ν . The separation ensures that agents

can be potentially confused about the precise state of ∆ai,t (and hence Et[ci,t+1]), even if

there are no aggregate productivity shocks. The persistent components {µi,t} as well as

the local demand shocks {zi,t} follow independent AR(1) processes with auto-correlations

(ρa, ρz) and one-step-ahead variances (σ2
a, σ

2
z). The variance and persistence parameters

are set based on Foster, Haltiwanger and Syverson (2008), who use plants’ price data to

disentangle demand from physical productivity shocks at the plant-level. Specifically, we

set ρa = ρz = .976, σa = .0552, σν = .0478, and σz = .2504, which imply within-product

dispersions and quarterly autocorrelations of zi,t and ∆ai,t that match the corresponding

statistics in Foster, Haltiwanger and Syverson (2008).14

5.2 Feasibility frontier

Our first exercise explores the maximal output volatility—as a function of its persistence and

the cyclicality of inflation—that our model can generate via incomplete information about

{∆ai,t, zi,t}. To do so, we focus on the case where there are no aggregate productivity shocks

(Var[εt] = 0), ruling out any fundamental source of aggregate fluctuations.

Volatility frontier (definition) Define σŷ(τ) ≡
√

Var[ŷt|I∗t−1] as the one-step-ahead

volatility of output induced by τ , as implied by Lemma 1. Similarly, define ρŷ(τ) ≡
Corr[ŷt, ŷt−1] as the first-order autocorrelation of ŷt, and define γŷπ(τ) ≡ Corr[ŷt, πt] as the

contemporaneous correlation with inflation. We use Lemma 2 to numerically trace out the

volatility frontier for output as a function of its autocorrelation ρŷ and its contemporaneous

correlation with inflation γŷπ:

σmax
ŷ (ρ̄ŷ, γ̄ŷπ) ≡max

τ,∆τ
{σŷ(τ)}

14The underlying calibration targets are .976 and .943 for the quarterly persistence rates of zi,t and ∆ai,t,
respectively, and 1.16 and .26 for the (unconditional) within-product dispersions.
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Figure 1: Feasibility frontier. The graph shows the maximal output volatility (denominated in percentage
deviations from the balanced growth path) that can be generated by incomplete information as a function of
aggregate persistence ρŷ and the contemporaneous correlation with inflation γŷπ.

subject to

Γs(τ, 0) = −Λs(∆τ, f) for all s ≥ 0

ρŷ(τ) = ρ̄ŷ

γŷπ(τ) = γ̄ŷπ

where Γs and Λs are defined in Lemma 2, f = (∆a, z) is the calibrated process for the

idiosyncratic fundamentals, and τ and ∆τ are independent (zero-mean) MA(h̄) processes.15

Results for baseline case Figure 1 presents the volatility frontier for Θbaseline
i,t . Here σmax

ŷ

is denominated in percentage deviations from the balanced growth path. The most striking

feature is the discrepancy at γŷπ = 0. When inflation is procyclical (γŷπ > 0), incomplete

information can explain an output volatility up to 1.76 percent. Evaluating σmax
ŷ at values

consistent with U.S. data, γŷπ = .3 and ρŷ = .9, the maximal volatility amounts to 1.1 percent,

which is about 9/10 of the corresponding volatility in the United States.16 By contrast, when

inflation is countercyclical (γŷπ < 0), the maximal volatility is increased by about one order

of magnitude.

15W.l.o.g., the aggregate wedges τ can be parametrized using two innovations. The island-specific compo-
nent ∆τ loads on up to two innovations in addition to the fundamental shocks that drive f .

16The comparison is based on the estimation introduced in Section 5.3 and detailed in Appendix D.
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The reason for the discrepancy is a fundamental difference in the channels through which

the model generates procyclical and countercyclical inflation dynamics. As implied by Propo-

sition 2, countercyclical inflation dynamics are intrinsically tied to expectation errors regard-

ing local demand, which can be quite large for the calibrated process for zi,t. By contrast,

procyclical inflation dynamics typically require some nominal misconception17, which is dis-

ciplined by the volatility of aggregate prices that can be generated in the first place.

Micro shocks and macro volatility How do changes in the specification of {∆ai,t} and

{zi,t} affect the volatility frontier σmax
ŷ ? To explore the link from micro-shocks to macro-

volatility, we conduct comparative statics exercises in σa, σν , σz, ρa and ρz. Here we focus on

the empirically plausible case where the macro-correlations γŷπ and ρŷ are fixed at .3 and .9,

respectively. The implied volatility frontier, σmax
ŷ , is depicted by the blue dots in Panels 1–5

of Figure 2. As mentioned above, under the baseline calibration, we have σmax
ŷ ≈ 1.1 percent,

indicated by the “×”-marks in the figure.

The sensitivity is strongest in σz and ρz, indicating that correlated expectation errors

about the demand shocks {zi,t} are of critical importance for supporting fluctuations in

aggregate confidence. In particular, a reduction in σz from its baseline value of .2504 to .01,

reduces σmax
ŷ by a factor of three to .37 percent; an increase in σz to 1.00, increases σmax

ŷ to

3.39 percent. Those comparative statics reflect the naturally increasing shape of σmax
ŷ in any

fundamental volatility. Intuitively, the more volatile zi,t (and ai,t), the larger the potential for

agents to make expectation errors, which is a direct consequence of the law of total variance

(Var[E{zi,t|Ii,t}] ≤ Var[zi,t]). In the extreme case where σz → 0, rationality requires that

E[zi,t|Ii,t] = 0 for all t, even if Ii,t contains no signal about zi,t.

Similarly to σz, variations in the persistence of zi,t also have a significant impact on σmax
ŷ :

a reduction of ρz from its baseline value of .976 to .5, reduces σmax
ŷ to .35 percent. An

increase in the persistence of zi,t to .99, increases σmax
ŷ to 3.18. The role of ρz for supporting

expectation errors is two-fold. First, Var[zi,t] is increasing in ρz, increasing the potential for

expectation errors similar to σz. Second, persistence in zi,t (or in ∆ai,t), enables optimism

and pessimism regarding the wealth of the local household, independently from the direct

effects on contemporaneous labor supply and demand. As fluctuations in perceived wealth

translate into fluctuations in desired consumption, they can be used to induce pro-cyclical

17Perceived fluctuations in local demand cannot induce procyclical inflation dynamics because of consump-
tion smoothing. Under standard preferences, consumption typically goes up by less than output in response
to a temporary increase in local demand. (This is true as long as zi,t is not too persistent; in our calibration
it holds for ρz ≤ .997.) The Taylor principle (φ > 1) then implies that booms caused by correlated errors
regarding {zi,t} must be accompanied by a drop in inflation so that consumption and output are equilibrated
through the induced decline in the real interest rate.
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Figure 2: Feasibility frontier for alternate specifications of the micro-shocks {∆ai,t, zi,t} and for alternate
information-bounds {Θi,t}. The graphs show the maximal output volatility σmax

ŷ (denominated in percent-
age deviations from the balanced growth path) that can be generated by incomplete information for the
empirically plausible case where ρŷ = .9 and γŷπ = .3. The “×”-marks indicate the case where both the
micro-shocks and Θi,t are fixed at their baseline values shown in Figure 1.

inflation dynamics as in Lorenzoni (2009), which is instrumental for generating the targeted

cyclicality of inflation (γŷπ = .3).18

By contrast, variations in the parameters of {ai,t} result in only moderate variations in

σmax
ŷ . In particular, reducing σa or σν to .01, implies only marginally smaller values of σmax

ŷ ,

suggesting that the idiosyncratic productivity shocks {∆ai,t} play a somewhat dispensable

18In order to generate pro-cyclical inflation dynamics through optimism and pessimism about zi,t, the
information structure must mute the direct substitution effect on labor demand. This can be achieved, for
instance, by making agents (sufficiently) informed about pi,t (coupled with some nominal misconception as
in Lucas (1972, 1973), so that pi,t does not fully reveal zi,t), which is a sufficient statistic about E[zi,t|Ii,t]
for determining labor demand.
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role in our calibration.

Alternative information assumptions We now turn to the sensitivity of the volatility

frontier with respect to the lower bounds on information, {Θi,t}.
As a first alternative, we consider the case without demand uncertainties (pi,t ∈ Θi,t), as

characterized in Lemma 3. Under the baseline parametrization of {∆ai,t, zi,t}, this reduces

σmax
ŷ to 0.41, providing a first indication that uncertainty about firms’ demand might be

relevant to generate sizable confidence-fluctuations. Moreover, compared to Θbaseline
i,t , the

sensitivity of σmax
ŷ in the parameters of {zi,t} is reduced, whereas the sensitivity in the

parameters of {ai,t} is heightened (illustrated by the gray squares in Figure 2). This is

because pi,t effectively serves as a signal regarding zi,t (see equation (27)), reducing the scope

for expectation errors about zi,t and, by implication, increasing the model’s reliance on ∆ai,t

for supporting aggregate fluctuations in confidence.

We next relax the assumption that households and firms share the same information set,

as characterized in Lemma 5 in the appendix (depicted by the red lines in Figure 2). Relative

to Θbaseline
i,t , this increases σmax

ŷ to 4.49 percent. This reflects the additional flexibility in Ifi,t
and Ihi,t, due to households not being required to perfectly know the local firm’s productivity

(i.e., ai,t, yi,t /∈ Θh
i,t) and firms not being required to perfectly know households’ consumption

(ci,t /∈ Θf
i,t). The stark increase in σmax

ŷ suggests that the common assumption of symmetric

information may in fact be quite restrictive.

Finally, we use the heterogeneous information setting to consider the case where only firms

have perfect information about pi,t, as characterized in Lemma 6 in the appendix (blue lines

in Figure 2). Compared to the symmetric-information case without demand uncertainty, σmax
ŷ

is slightly increased to 0.49. However, the difference between symmetric and heterogeneous

information is now much less pronounced, suggesting that imposing informational symmetry

is somewhat less restrictive when firms know their demand while making their production

choices.

Effects of incomplete-information horizon As a final comparative static, we evaluate

the sensitivity of σmax
ŷ in the incomplete information horizon h̄. Because the autocorrelation of

any MA(h̄ ≤ 4) process is bounded above by less than the targeted autocorrelation (ρŷ = .9),

we have σmax
ŷ = 0 for all h̄ ≤ 4. Conditional on h̄ ≥ 5, the impact of h̄ is moderate,

especially for the cases without demand uncertainty. Under the baseline specification for

Θi,t, the impact is somewhat more pronounced, reducing σmax
ŷ to .76 when h̄ is reduced to 10

quarters.

24



5.3 Application to U.S. Business Cycles

We now explore the degree to which U.S. business cycle data is consistent with a theory

of incomplete information. To this end, we first estimate an unrestricted wedge process

τ̂t ≡ (τ̂ ct , τ̂
x
t ) that in the tradition of Chari, Kehoe and McGrattan (2007) best describes

the data. We then partition τ̂t into an informational component τ info
t (restricted by our

theoretical characterization) and an unrestricted residual component τ resid
t , and maximize the

contribution of the informational component τ info
t under varying assumptions on {∆ai,t, zi,t}

and {Θi,t}.

5.3.1 Methodology

Here we briefly describe the initial estimation step and then formalize our approach to par-

titioning the estimated wedge process into an informational and residual component. A

detailed description of the preliminary estimation is contained in Appendix D.

Summary of estimation step We use the generalized method of moments (GMM) to

estimate the process τ̂t that best matches the auto-covariance structure of quarterly U.S. data

on real per-capita output, inflation, nominal interest rates, and per-capita hours, targeting all

auto-covariances between zero and 8 quarters. All moments are computed at business cycle

frequencies, applying an high-pass filter with a cutoff of 32 quarters to the model and the

data. We model τ̂ as MA(14) processes, which loads on two intrinsic innovations, denoted

by ût, in addition to the productivity shock ε̂t.

Despite targeting more data series than there are shocks, the estimated process τ̂t fits the

data quite well: the model replicates the U.S. auto-covariance structure within the confidence

bands of the data (see Figure 4 in the appendix). The productivity shock ε̂t explains about

36 percent of the filtered variance in ŷt and about 11 percent to the filtered variance of yt.
19

The remaining fluctuations are explained by the intrinsic innovations ût.

Table 1 summarizes key moments of the estimated wedges (τ̂ ct , τ̂
x
t ) and the estimated

productivity shock ε̂t. Most noticeable is the strong positive correlation between the Euler

wedge and the labor wedge (Corr[τ̂ ct , τ̂
x
t ] = .99) and both wedges’ negative correlation with

productivity growth (Corr[τ̂t, ε̂t] = −.27).

19The contribution of at to ŷt exceeds the one to yt, due to a negative correlation between at and ŷt,
reflecting a slow adjustment in response to productivity shocks.
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Table 1: Summary of estimated U.S. wedges

Contemporaneous correlation

Standard

deviation

First-order

autocorr.

with τ̂ ct with τ̂xt with ε̂t

τ̂ ct 0.051 0.91 1.00 · ·
τ̂xt 0.044 0.91 0.99 1.00 ·
ε̂t 0.010 – -0.27 -0.27 1.00

Partitioning of the estimated wedges We partition the estimated wedge process τ̂t into

an informational component τ info
t and a residual component τ resid

t ,

τ̂t = τ info
t + τ resid

t . (32)

In parallel to τ̂t, we model both components as statistically independent MA(14) processes,

τ info
t = Φinfo

ε (L)εinfo
t + Φinfo

u (L)uinfo
t

τ resid
t = Φresid

ε (L)εresid
t + Φresid

u (L)uresid
t ,

where Φinfo
ε , Φinfo

u , Φresid
ε and Φresid

u are square-summable lag polynomials in non-negative

powers of L. The innovations, εinfo
t , εresid

t , uinfo
t and uresid

t , are mutually orthogonal white

noise. In particular, εinfo
t and εresid

t are innovations to aggregate productivity, satisfying

ε̂t = εinfo
t + εresid

t , (33)

with standard deviations σinfo
ε and σresid

ε . The corresponding lag-polynomial Φinfo
ε captures

how incomplete information regarding at influences the propagation of productivity shocks.20

The innovations uinfo
t and uresid

t , each two-dimensional, are intrinsic shocks to τ info
t and τ resid

t .

Accordingly, the lag-polynomial Φinfo
u defines intrinsic fluctuations in τ info

t , driven by expec-

tation errors, whereas Φresid
u defines intrinsic fluctuations in the residual wedges τ resid

t .

The defining difference between τ info
t and τ resid

t is that we impose the conditions of The-

orem 1 on τ info
t , whereas τ resid

t remains unrestricted. We gauge the potential role of in-

20Conversely, Φresid
ε captures the effects of other potential frictions in propagating productivity shocks.

Splitting aggregate productivity into two independent innovations ensures that the volatility generated by
incomplete information is independent of the residual wedges τ residt . If we instead let τ infot and τ residt load
jointly on the combined productivity shock εt, we find that one can increase the variance contribution of uinfot

almost arbitrarily through incomplete information regarding at and its propagation through τ residt . Below
we also consider the case where agents perfectly observe aggregate productivity, in which case both settings
give identical results.
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complete information for explaining the U.S. business cycle by maximizing the contribu-

tion of expectation errors uinfo
t to the filtered variance of ŷt. Let ŷtfp

t ≡ E[ŷt|(εinfo
t−s, ε

resid
t−s )s≥0],

ŷinfo
t ≡ E[ŷt|(uinfo

t−s)s≥0], and ŷresid
t ≡ E[ŷt|(uresid

t−s )s≥0] denote the projection of the output gap on

aggregate productivity, expectation errors, and residual shocks, respectively. Independence

of the innovations implies Var[ŷt] = Var[ŷtfp
t ] + Var[ŷinfo

t ] + Var[ŷresid
t ]. Then the maximal

contribution of uinfo
t is given by:

max
τ info,τ resid,σinfo

ε ,σresid
ε

{
Var[ŷinfo

t ]/Var[ŷt]
}

(34)

subject to two constraints. First, there must exist a (zero-mean) MA(h̄) process for {∆τi,t} so

that the informational component τ info
t is implementable as characterized in Theorem 1. Sec-

ond, we require that the auto-covariance structure for (ŷt, πt, εt) induced by (τ info
t , τ resid

t , εinfo
t , εresid

t )

is identical to the one induced by (τ̂t, ε̂t). Thus, our partitioned wedges are constrained to

produce output, productivity and inflation dynamics that match those observed in the United

States.

Observe that Var[ŷtfp
t ] and Var[ŷt] are fully pinned down by the estimated wedge process

τ̂t. Hence, instead of maximizing the contribution of uinfo
t to Var[ŷt], we can equivalently

maximize the contribution of uinfo
t to the portion of ŷt that is not driven by the productivity

shock, Var[ŷt|{at−s}s≥0] = Var[ŷt]− Var[ŷtfp
t ].

5.3.2 Results

The results are presented in Figure 3. To assess which conditions are necessary for incomplete

information to generate sizable aggregate fluctuations, we consider five specifications for the

lower bounds {Θi,t}, represented by the five lines in the graph. Along the principal axis, we

also consider variations in the parametrization of the micro-shocks {∆ai,t, zi,t}, scaling their

standard deviations, (σa, σν , σz), by up to ±1 order of magnitude relative to the baseline

calibration.21 With the exception of the symmetric information benchmark, all specifications

allow households and firms to have access to potentially heterogeneous information as in

Section 4.2.4.

Benchmarks As benchmark, we first consider the cases characterized in Lemmas 2 and

5, where few restrictions are imposed on information beyond rational expectations. In both

cases, confidence shocks can fully account for all U.S. business cycle fluctuations unexplained

21The scaling is applied to all three micro-shocks proportionately to their respective baseline values; i.e.,
the scaled standard deviations are given by (σa, σν , σz)× scale.
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Figure 3: Maximal contribution to U.S. business cycle volatility. The graph shows the maximal variance
contribution of uinfot to the portion of the U.S. output gap not driven by productivity, Var[ŷt|{at−s}s≥0],
computed at business cycle frequencies. The lines correspond to different assumptions on the lower bound
of information {Θi,t}. The variation on the principal axis considers alternative values for (σa, σν , σz), which
are scaled by up to ±1 order of magnitude relative to the baseline calibration (scale = 1).

by the productivity shock (Var[ŷinfo
t ]/Var[ŷt|{at−s}s≥0] ≈ 1), provided that (σa, σν , σz) are at

least as volatile as in our baseline calibration (scale ≥ 1).22 For the asymmetric information

case (red line), the result is also robust to a downward-scaling of the micro-shocks by up to

a factor of three. For the symmetric information case (blue dotted line), a reduction in the

micro-volatilities by a factor of two (three), reduces the maximal contribution to 90 percent

(67 percent).

Sentiments versus noisy learning about aggregate shocks The benchmarks show

that, in combination with productivity shocks, rational fluctuations in confidence have the

potential to fully account for the U.S. business cycle. We now take a closer look at which type

of confidence fluctuations are necessary to achieve this. Specifically, we differentiate between

two types of confidence: (i) correlated confidence about idiosyncratic business conditions

(aka “sentiment shocks”), and (ii) correlated confidence about aggregate productivity as in

Angeletos and La’O (2010) or about future average productivity as in Lorenzoni (2009).

22Note that this also implies a perfect account of all inflation-dynamics that are unexplained by the pro-
ductivity shock, since the partitioning of the wedges is constrained to implement the empirical covariance
structure for (ŷt, πt, εt).
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First, consider the case of sentiment shocks. We isolate their potential contribution by

imposing perfect knowledge about the history of aggregate productivity as in Section 4.2.3,

eliminating any scope for TFP-driven fluctuations in confidence. Comparing the resulting

contribution (dashed green line) with the benchmark reveals that for small scales of the micro

shocks, confidence about aggregate productivity is indeed key for explaining the data. On

the other hand, when there is sufficient idiosyncratic volatility (scale ≥ 3), sentiment shocks

alone can do as well as the benchmark. For the baseline calibration (scale = 1), sentiment

shocks can account for 57 percent of non-productivity fluctuations in U.S. output.

Next, consider the case without sentiment shocks. To eliminate them, we set Θf
i,t and

Θh
i,t as in (30) and (31), augmented by {µi,t−s, zi,t−s}s≥0. Here we do not include the iid-

productivities, νi,t, in Θf
i,t or Θh

i,t as this would allow firms to fully back out at from observing

ai,t. However, because νi,t is serially uncorrelated and firms know ai,t, expectation errors

about νi,t have no direct effect on their actions, so that all fluctuations in confidence indeed

reflect imperfect information about the aggregate productivity state. The quantitative results

are shown by the gray squared lines in Figure 3. Under the baseline calibration of the micro-

shocks (scale = 1)23, TFP-driven fluctuations in confidence can explain at most 3.4 percent

of the empirical output volatility, indicating that sentiment-driven fluctuations in confidence

are indispensable for explaining the U.S. business cycle with information frictions. This is

because aggregate productivity shocks have only a limited importance by themselves, which

in turn limits the potential for optimism regarding them to drive the business cycle.24

Interestingly, however, the two cases without sentiment- and productivity-driven confi-

dence add up to less than the benchmark, indicating a complementarity between sentiments

and confidence about aggregate productivity. Such complementarity may arise, because

confidence-fluctuations of one type may serve as noise in endogenous signals regarding the

other type of fundamental shock.25 Confidence about aggregate productivity shocks may

therefore induce additional confidence about local conditions, and visa versa.

No demand uncertainty The final specification considers the case where firms know their

demand when making their production choices as characterized in Lemma 6 (solid blue line).

In this case, the maximal contribution to the empirical business cycle volatility amounts to 4.1

23Here we re-calibrate the local productivity shocks to attribute all productivity dispersion to νi,t. This

ensures that the inclusion of µi,t in Θf
i,t and Θh

i,t does not mechanically reduce the idiosyncratic noise that
prevents firms from learning at from observing ai,t − µi,t = at + νi,t.

24See Chahrour and Jurado (2017) and Angeletos, Collard and Dellas (2018) for independent evidence
that productivity shocks play a small role in the business cycle. Indeed, Cochrane (1994) argues that all
directly-measurable aggregate shocks play a small role in driving business cycle fluctuations.

25See also Chahrour and Gaballo (2016).
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Table 2: Implied variance contribution to U.S. output

Contribution to

Var[yt|{at−s}s≥0] Var[yt] Var[ŷt]

Heterogeneous info benchmark 1.00 0.89 0.64

Symmetric info benchmark 0.99 0.89 0.63

No TFP-driven confidence 0.57 0.51 0.36

No sentiment-driven confidence 0.03 0.03 0.02

No demand uncertainty 0.04 0.03 0.02

Notes.—The table shows the share of output that can be accounted by the intrinsic shocks to the infor-
mational component of the estimated wedges, uinfot . The contribution of the productivity shock to Var[yt]
and Var[ŷt] is 11 and 36 percent, respectively. All variance contributions are computed at business cycle
frequencies for the baseline calibration of {∆ai,t} and {zi,t} (i.e., scale = 1 in Figure 3).

percent, which is almost as low as when fully shutting down all sentiment-fluctuations. The

result indicates that demand uncertainties are key for supporting a significant contribution

of sentiment-shocks.

Implied variance contribution to U.S. output The results in Figure 3 show the

business-cycle contributions to output volatility that is unexplained by productivity,

Var[ỹt|{at−s}s≥0] (equivalently Var[yt|{at−s}s≥0]). Table 2 computes the implied contribu-

tion to the overall volatility in yt and ŷt. The discrepancy between the three columns reflects

the contribution of the productivity shock to yt and ỹt. Looking at the contribution to

yt, sentiment-driven fluctuations in confidence can account for 51 percent of the empirical

volatility. Importantly, however, for a theory of incomplete information to generate signifi-

cant fluctuations in confidence, firms must face some uncertainty about their idiosyncratic

product demands. If this is not the case, then confidence fluctuations can at most explain 3

percent of the empirical volatility in yt.

6 Taking Stock

We have developed a method to quantify the potential of DSGE models with imperfect

information without taking a fully structural stand on the private information of agents.

Along the way, we established a conditional equivalence, which holds under the conditions

of Theorem 1, between models with dispersed information and a prototype wedge-economy

similar to the one in Chari, Kehoe and McGrattan (2007). The informational foundation

for these wedges is distinguished from existing theories in its ability to generate arbitrary

correlation patterns between these wedges (Proposition 1). Correlated wedges, in turn, are
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critical for the empirical viability of confidence fluctuations because the data imply a strong

correlation between the aggregate labor wedge and the Euler wedge. Expectations are a

natural candidate for generating the observed correlation, both because information can

be correlated between households and firms and because expectation errors by households

generally affect both their consumption and labor supply. Our results indicate, however, that

two features are crucial to achieve a quantitively important role for such a foundation: (i)

micro-shocks must be sufficiently volatile and (ii) idiosyncratic demand must be uncertain at

the time of production choices. Our analysis also indicates that observed micro-level volatility

is large enough to support substantial aggregate volatility: rational confidence shocks could

well explain the data. This suggests to us that future researchers may wish to investigate the

empirical evidence regarding (ii), that is, to measure the degree to which firms misperceive

their own demand shocks when making their input choices.
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A Representation Theorem

In this appendix, we present our main representation theorem and show how it applies to

the specific model introduced in the main body of the paper.

A.1 General Incomplete Information Model

Consider a linear economy with J different types of agents. Agents within type j ∈ {0, 1, ..., J}
are indexed by i ∈ [0, 1], but they are ex-ante symmetric: they differ only because of ex-post

realizations of shocks. Meanwhile, agents of two different types j and j′ may be distin-

guished by differences in their physical environment, differences in their economic objectives,

differences in their information, or by their fundamental nature (e.g., households vs. firms).

Non-atomistic agents such as a monetary authority can be introduced as part of any type j

by including their actions in the aggregate vector, gat (defined below).

The equilibrium conditions of such a model can be written as

0 =
J∑
j=0

E

{[
Aj

1 Aj
2

] [ gi,t+1

fi,t+1

]
+
[

Bj
1 Bj

2

] [ gi,t

fi,t

] ∣∣∣∣∣ Iji,t
}

(35)

with gi,t ≡ [∆gi,t; g
a
t ] and fi,t ≡ [∆fi,t; f

a
t ]. Here, ∆gi,t is a n∆g-dimensional column vec-

tor defining purely atomistic variables that satisfy the adding-up constraint
∫ 1

0
∆gi,t di = 0,

whereas gat is a nga-dimensional column vector defining purely aggregate variables. Simi-

larly, ∆fi,t and fat define column vectors of purely atomistic and purely aggregate exogenous

Gaussian processes, evolving according to

∆fi,t = f i(L)εi,t (36)

fat = fa(L)εt, (37)

where again
∫ 1

0
∆fi,t di = 0. Note that gi,t and fi,t contain variables relevant for any class

j ∈ J (e.g., both household and firm variables), and that (gat , f
a
t ) may include but is not

restricted to contain the averages corresponding to the variables defined by (∆gi,t,∆fi,t).

Different types of agents can be subject to different types of shocks, since they can load on

different elements in fi,t.
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A.2 Primal Representation

The primal representation of the economy is

0 =

(
J∑
j=0

[
Aj

1 Aj
2

])[ Etgi,t+1

Etfi,t+1

]
+

(
J∑
j=0

[
Bj

1 Bj
2

])[ gi,t

fi,t

]
+

J∑
j=1

τ ji,t (38)

We denote by E(F , T ) the set of equilibria of the primal economy with fundamentals Ft ≡
{∆fi,t}i∈[0,1] ∪ fat and expectation wedges Tt ≡ {τ ji,t}, which have stationary Gaussian dis-

tributions that are ex-ante symmetric across i.26 The literature offers myriad strategies for

solving models of the form in (38).27

A.3 Main Theorem

Before stating the general theorem, we generalize Assumptions 1–3 from the main text to

the more general context here.

Assumption 4 (Information bounds). {µji,t} ⊆ Θj
i,t ⊆ I

j
i,t ⊆ I∗t where µji,t defines the

“equilibrium expectations” implicit in the primal economy,

µji,t ≡ E[Aj1gi,t+1 + Aj2fi,t+1 +Bj
1gi,t +Bj

2fi,t|I∗t ] + τi,t.

Note that µji,t correspond precisely to agents’ equilibrium expectations in the information

economy. Accordingly, including µji,t as part of the lower bound Θj
i,t merely reflects the

standard rationality requirement that agents know their own expectations. For instance, the

requirement holds in the concrete economy in the main text, since the actions ci,t, ni,t and

yi,t encompass the expectations of agents.

Assumption 5 (Recursiveness). Iji,t−1 ⊆ I
j
i,t and Θj

i,t ⊆ Θj
i,t.

The assumption states that all agents perfectly recall past information available to them,

which is a standard consistency requirement imposed on dynamic learning models in most

economic settings. Our main theorem states conditions so that even with perfect recall,

we can construct a consistent information structure to implement Tt. The assumption is,

26Since our assumptions ensure that agents with type-j face ex-ante symmetric environments, any possible
asymmetry must pertain to equilibrium outcomes. Such endogenous asymmetries could be accounted by for
in our general environment by allowing for equilibrium policies to differ across otherwise identical types j.

27There is no need for equilibrium in the primal economy to exist or be unique. If E(F , T ) has multiple
elements, our results hold with respect to each of them. Even if E(F , T ) is a singleton, the incomplete-
information economy may still feature multiplicity as T itself may be driven by sunspot-realizations as in,
e.g., Benhabib, Wang and Wen (2015).
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however, not crucial for our results. If one wishes to allow for imperfect recall, an analog

version of the proof holds in that case.

Assumption 6 (Ex-ante symmetry). The unconditional distribution over (Iji,t, fi,t) is iden-

tical across all i and t, but not necessarily across j.

Compared to the formulation in the main body, the more general formulation of Assump-

tion 6 emphasizes the potential for including ex-ante information differences within the model

formulation in (35). In particular, otherwise identical groups of agents who have different

information sets can be incorporated by introducing an additional agent type j′ with an

identical economic problem to group j, but different information set Iji,t 6= I
j′

i,t.

Theorem 1 (general version). Fix F , T and E ∈ E(F , T ). Then there exists an information

structure satisfying Assumptions 4–6 that implements T , and hence E, in the incomplete-

information economy if and only (i) E[τ ji,t] = 0 and (ii)

E[τ ji,tθ] = 0 for all θ ∈ Θj
i,t. (39)

hold for all i, j, and t.

A.4 Proof of Main Theorem

Consider any expectation wedge τ ji,t ∈ Tt from the primal economy and the corresponding

lower bound Θj
i,t on Iji,t in the incomplete information economy. Define the expectation

“targets”

âji,t ≡ Aj1gi,t+1 + Aj2fi,t+1 +Bj
1gi,t +Bj

2fi,t,

which emerge from the equilibrium E ∈ E(F , T ) of the primal economy.

We want to show that conditions (i) and (ii) are jointly necessary and sufficient for the

construction of some Iji,t ⊇ Θj
i,t such that

E[âji,t|I
j
i,t] = E[âji,t|I∗t ] + τ ji,t. (40)

When this is true, the actions of agents (i, j) holding information Iji,t in the information

economy will be the same as those of agent (i, j) in the primal economy, sustaining the

equilibrium; i.e. a solution to (38) will also be a solution to (35).

To conserve notation, we suppress (i, j) subscripts going forward.
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Necessity. Necessity is immediate, since optimal inference requires that expectation errors

are orthogonal to variables in the information set and are unpredictable. To see this, rearrange

(40) to get

τt = E[ât|It]− E[ât|I∗t ]. (41)

Computing the unconditional expectation over (41) yields E[τt] = 0. Similarly, postmultiply-

ing (41) by θt ∈ Θt gives E[τtθt] = E[âtθt|It] − E[âtθt|I∗t ] as θt ⊆ It ⊆ I∗t . Again computing

the unconditional expectation, we have E[τtθt] = 0 for all θt ∈ Θt.

Sufficiency. We demonstrate sufficiency by construction. Let at ≡ E[ât|I∗t ] and consider

the information set It = Θt ∪ {st−τ}τ≥0, where st ≡ at + τt = µt is a signal that replicates

the correlation structure of the expectation we wish to implement. Notice that It inherits

recursiveness from Θt, ensuring consistency with Assumption 5.

From the law of iterated expectations, we have E[ât|st] = E[at|st] as st ⊆ I∗t . Projecting

at onto st we obtain

E[ât|st] = Cov[at, st]Var[st]
−1st

= Cov[st − τt, st]Var[st]
−1st

= Var[st]Var[st]
−1st

= st, (42)

where the second line follows from the definition of st and the third line follows from condition

(ii) of the Theorem and the fact that st = µt ∈ Θt. Noting that by construction no other

θt ∈ Θt can improve the forecast about ât,
28 we obtain

E[ât|st] = E[ât|It] = E[ât|I∗t ] + τt.

As the argument above applies to any τ ji,t ∈ T , we have constructed exactly the informa-

tion sets needed to satisfy (40) for all (i, j, t).

28To see this, note that the forecast error conditional on st is necessarily uncorrelated with any other
θt ∈ Θt: Cov[ât − E{ât|st}, θt] = Cov[ât − st, θt] = Cov[ât − at − τt, θ] = Cov[−τt, θt] = 0. Here the first
equality follows from (42); the second one follows per the definition of τt; the third one follows, because
ât − at defines the forecast error under full information I∗t , so that any θt ∈ Θt ⊂ I∗t must be orthogonal to
it; and the last equality follows from the conditions of the theorem.
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A.5 Baseline Economy

The equilibrium conditions of the model economy can be written in the general form above

with J = {0, 1}. Here we use j = 0 to refer to the full-information set (I0
i,t = I∗t ) and j = 1

to refer to the information available to households and firms on island i. Specifically, let

∆gi,t = [∆ci,t,∆yi,t,∆pi,t,∆bi,t−1], gat = [yt, πt, pt−1] and ∆fi,t = [∆zi,t,∆ai,t] and fat = [at].

Then the model economy is described by the following system of equations.

For j = 0 (full information), we have:

A0
1 =


· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · β · · · · · ·
· · · · · · · · · −1

 A0
2 =


· · ·
· · ·
· · ·
· · ·
· · ·



B0
1 =


1 · · · 1 · ·
· 1 · · 1 · ·
· η−1 1 · · · ·
1 −1 −1 −1 · · ·
· · · · · 1 1

 B0
2 =


· · ·
· −1 −1

−1 · ·
· · ·
· · ·


For the equations describing the expectations of firms and households, we have:

A1
1 =


−1 · · · · · · −1 −1 ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·

 A1
2 =


· · ·
· · ·
· · ·
· · ·
· · ·



B1
1 =


· · · · · · · · φ ·
ξ −ξ −ξ · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·

 B1
2 =


· · ·
· · ·
· · ·
· · ·
· · ·


Here, the four equilibrium conditions (5)–(8) are captured by the first four rows in above

matrices. The last row defines πt. Together with the adding-up constraints on ∆gi,t and ∆fi,t

this completely describes the dynamic system.
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B Heterogeneous Information Between Households and

Firms

This appendix generalizes the theoretical characterization in Section 4.2 for the case where

households and firms base their decisions on distinct information sets, Ihi,t and Ifi,t.
This distinction between household and firm information sets manifests itself in the labor

supply and demand curves, which are given by:

wi,t = ζni,t + ci,t + E[pt|Ihi,t] (43)

wi,t = ai,t + E[pi,t|Ifi,t]. (44)

Combing equations, we obtain the same labor market clearing condition as before, stated in

(6), but where the “combined” labor wedge is now composed of household and firm errors

based on Ihi,t and Ifi,t, respectively:

τxi,t = τx,fi,t − τ
x,h
i,t

with

τx,hi,t = E[pt|Ihi,t]− pt (45)

τx,fi,t = E[pi,t|Ifi,t]− pi,t. (46)

Meanwhile, the Euler wedge, τ ci,t, is unambiguously associated with the household’s consump-

tion choice and only depends on Ihi,t.
As a benchmark, we impose lower bound on Ihi,t and Ifi,t stated in (30) and (31). The corre-

sponding implementation condition for the macro wedges, derived in analog to Section 4.2.1,

is given by:

Lemma 5. Fix a (zero mean) MA(h̄) process τ for (τ ct , τ
x,f
t , τx,ht ) and set Θh

i,t and Θf
i,t as in

(30) and (31). Then there exists an information structure consistent with Assumptions 1–3

that implements τ in the incomplete-information economy, if and only if there exists a (zero

mean) MA(h̄) process ∆τ such that

Cov[(τ ct , τ
x,h
t ), (dyt−s, dŷt−s, dwt−s)] =

− Cov[(∆τ ci,t,∆τ
x,h
i,t ), (∆dci,t−s,∆dni,t−s,∆dwi,t−s)] for all s ≥ 0 (47)
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and

Cov[τx,ft , (dyt−s, dŷt−s, dwt−s)] =

− Cov[∆τx,fi,t , (∆dyi,t−s,∆dni,t−s,∆dwi,t−s)] for all s ≥ 0. (48)

The mappings (τ, ε) 7→ (dy, dŷ, dw) and (∆τ, f) 7→ (∆dc,∆dy,∆dn,∆dw) are available in

closed-form, stated in Appendix C.6.

As (30) and (31) are each a subset of Θbaseline
i,t , the benchmark established in Proposition 1

continues to hold in the current heterogeneous information setting.

Proposition 3. Fix a (zero mean) MA(h̄) process τ for (τ ct , τ
x
t ), and set Θh

i,t and Θf
i,t as in

(30) and (31). Then for any aggregate productivity process a there exists an idiosyncratic

process f such that τ can be implemented in the incomplete information economy.

Similar to before, we also consider the variation where

Θf
i,t = {Ai,t, Pi,t, Ni,t, Yi,t,Wi,t, I∗t−h̄} ∪Θf

i,t, (49)

so firms face no demand-uncertainty. From (46), it is clear that knowledge of pi,t suffices to

fully shut down the firm wedge (τx,fi,t = 0). Intuitively, firms only need to know their marginal

costs, wi,t − ai,t, and their local demand, pi,t, to behave as if they have full information (see

also Hellwig and Venkateswaran, 2014).

Lemma 6. Fix a (zero mean) MA(h̄) process τ for (τ ct , τ
x,f
t , τx,ht ) and set Θh

i,t and Θf
i,t as in

(30) and (49). Then there exists an information structure consistent with Assumptions 1–3

that implements τ in the incomplete-information economy, if and only if there exists a (zero

mean) MA(h̄) process ∆τ such that

τx,ft = ∆τx,fi,t = 0 for all i, t

holds in addition to (47).

The next proposition generalizes the conclusion in Proposition 2 to the case where only

firms learn about pi,t.

Proposition 4. Set Θh
i,t and Θf

i,t as in (30) and (49). Then an aggregate process τ for

(τxt , τ
c
t ) with Var[τxt ] > 0 is implementable in the incomplete information economy only if it

implies inflation to be procyclical (Corr[ŷt, πt] > 0).
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As before, with pi,t known by firms, all output deviations away from potential must be

driven by misperception of aggregate nominal conditions, ruling out countercyclical inflation

dynamics.

C Additional Proofs

C.1 Proof of Lemma 1

The characterization for ŷt is immediate. To solve for πt, let πt = π(L)ut, define

Ã(L)ut ≡
[
−1 ξ

]
A(L)ut = ξτxt − τ ct ,

and substitute in (18) to obtain

π(L)ut = φ−1
[
(L−1 − 1)Ã(L) + L−1π(L)

]
+
ut

where [·]+ sends negative powers of L to zero. Applying the z-transform, we obtain the

following functional equation

(z−1 − φ)π(z) = (1− z−1)Ã(z) + z−1Ã0 + z−1π0. (50)

Stationarity requires π to be analytic on the unit disk (Whiteman, 1983). Evaluating (50)

at z = φ−1 ∈ (−1, 1), therefore, pins down

π0 = (1− φ−1)Ã(φ−1)− Ã0,

so that

π(z) =
(1− z)Ã(z)− (1− φ−1)Ã(φ−1)

φz − 1
.

C.2 Proof of Lemma 2

From the discussion in the main text, it follows that the following three conditions are jointly

necessary and sufficient to invoke Theorem 1:

1. E[τt] = E[∆τi,t] = 0,

2. τt and ∆τi,t are independent MA processes of at most order h̄,

3. condition (24) holds.
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It remains to characterize the mappings Γs and Λs.

Characterization of Γs The mapping Γs is immediate from (19),

Γs(τ, ε) = ξCov[τt, dτ
x
t−s]× [1, 1, 0] + Cov[τt, εt−s]× [1, 1, 1]. (51)

Characterization of Λs We now solve the “Delta-economy” for the endogenous law of

motions for ∆dci,t and ∆dyi,t. The equilibrium of the Delta-economy is defined by (7), (8),

(22), (23) together with the definition for xi,t:

∆pi,t = −η−1∆yi,t + zi,t

βbi,t = bi,t−1 + xi,t

∆ci,t = Et[∆ci,t+1 −∆τ ci,t+1] + ∆τ ci,t

∆yi,t = ξ(xi,t + ∆τxi,t) + ∆ai,t

xi,t = ∆yi,t −∆ci,t + ∆pi,t.

The system can be rewritten as

Et[d∆yi,t+1] = δEt[ξ−1d∆ai,t+1 + dzi,t+1 + d∆dτxi,t+1 − d∆τ ci,t+1] (52)

βbi,t = bi,t−1 + ξ−1(∆yi,t −∆ai,t)−∆τxi,t (53)

where δ ≡ (η−1 + ξ−1 − 1)−1, and consumption is determined by

∆ci,t = −δ−1∆yi,t + zi,t + ∆τxi,t + ξ−1∆ai,t. (54)

Fix some process (∆τ ci,t,∆τ
x
i,t,∆ai,t, zi,t)

′ = B(L)υi,t, where B(L) is a square-summable

matrix-polynomial in non-negative powers of the lag operator L and the vector υi,t are white

noise shocks. Conjecture

∆yi,t = ξ(β − 1)bi,t−1 + Φ(L)υi,t. (55)

Substituting (55) in (53), it must be that

Φ(L)υi,t = ξβdbi,t + ξ∆τxi,t + ∆ai,t. (56)

Using (55) to eliminate ∆dyi,t+1 in (52), we have

(β − 1)ξdbi,t +
[
(L−1 − 1)Φ(L)

]
+
υi,t =

[
−δ δ δξ−1 δ

] [
(L−1 − 1)B(L)

]
+
υi,t (57)
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where [·]+ sends the negative powers of L to zero. Further using (57) to eliminate dbi,t in

(56) and applying the z-transform, we obtain the following functional equation

(1− β−1z)Φ(z) =[
−δ δ δξ−1 δ

]
[(1− z)B(z)−B0] + Φ0 + (1− β−1)

[
0 ξ 1 0

]
B(z)z. (58)

Evaluating (58) at z = β ∈ (−1, 1), pins down Φ0 and Φ(z), from which we obtain the

following equilibrium process for d∆yi,t ≡ dy(L)υi,t and d∆ci,t ≡ dc(L)υi,t:

dy(z) =
[
−δ δ δξ−1 δ

]
(1− z)B(z) +

[
δ ξ − δ 1− δξ−1 −δ

]
(1− β)B(β) (59)

and

dci,t =
[
1 0 0 0

]
(1− z)B(z) +

[
−1 1− δ−1ξ ξ−1 − δ−1 1

]
(1− β)B(β). (60)

Collecting equations, we obtain

Λs(∆τ, f) = Cov

∆τi,t,

 1 0 0 0

−δ δ δξ−1 δ

0 0 1 0

 (1− L)B(L)υi,t−s



+ Cov

∆τi,t,

−1 1− δ−1ξ ξ−1 − δ−1 1

δ ξ − δ 1− δξ−1 −δ
0 0 0 0

 (1− β)B(β)υi,t−s

 (61)

for

∆τi,t =

[
1 0 0 0

0 1 0 0

]
B(L)υi,t.

C.3 Proof of Proposition 1

The proposition is proved by construction. In particular, we provide an algorithm that for

arbitrary {Γs}h̄s=0 constructs processes ∆τ and f to satisfy (24).

To begin, substitute (61) to (24), post-multiply both sides by

M ≡

1 1 0

0 δ−1 0

0 −ξ−1 1

 ,
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and apply the z-transform, to obtain the equivalent functional equation

Γ̃(z) =

[
1 0 0 0

0 1 0 0

]
[
B(z)(1− z−1)B(z−1)′

]
+

1 0 0 0

0 1 0 1

0 0 1 0


′

+

+ B(z)(1− β)B(β)′

−1 1− δ−1ξ ξ−1 − δ−1 1

0 0 0 0

0 0 0 0


′ (62)

where Γ̃(z) ≡ Z{−ΓsM}s≥0 is the (one-sided) z-transform of {−ΓsM}, and whereB parametrizes

the joint process (∆τi,t, fi,t) as in the proof of Lemma 2. In particular, let

B(L) =

Bτ (L)

Ba(L)

Bz(L)


where Bτ (z) is a lag-polynomial of size 2 × n, Ba(z) and Bz(z) are each lag-polynomials of

size 1× n, and n is an arbitrary number of innovations. Then (62) can be further rewritten

as

Γ̃1(z) + Ω(z) =
{

(1− z−1)Bτ (z)Bτ (z
−1)′
}

+
+ Ψ(z) +Bτ (z)Bτ (β)′Λ (63)

and

Γ̃2(z) =
{

(1− z−1)Bτ (z)Ba(z
−1)′
}

+
, (64)

where Γ̃1 and Γ̃2 correspond to the first two and third column of Γ̃, respectively, and where

Ψ(z) ≡
{
Bτ (z)

[
(1− β)Bz(β)′ (1− z−1)Bz(z

−1)′
]}

+

and

Ω(z) ≡ −(1− β)(ξ−1 − δ−1)
[
Bτ (z)Ba(β)′ 0

]
and

Λ ≡

[
−(1− β) 0

(1− β)(1− δ−1ξ) 0

]
.

Fix N ≤ h̄ as the largest non-zero power of z in Γ̃. Consider the following parametric
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structure for Bτ , Ba, and Bz:Bτ (z)

Ba(z)

Bz(z)

 =

λτ (z) I

λa(z) (1− z)−1λa,0

0 λz,0 + λz,1z


with

λτ (z) =
[
λτ,1 + ρz · · · λτ,N + ρNzN

]
and

λa(z) =
[
(1− z)−1λa,1 · · · (1− z)−1λa,N

]
,

and where {λa,j, λz,j} are of size 1 × 2 and {λτ,j} are of size 2 × 2. Observe that Bτ is at

most of order h̄ in line with the requirements of Lemma 2.

Condition (64) then simplifies to

Γ̃2(z) = λτ (z)λ′a + λ′a,0.

So for any λτ , it suffices to set

λa,s = ρ−sΓ̃′2,s ∀s ≥ 1, and

λa,0 = Γ̃′2,0 −
N∑
j=1

λ′τ,jλa,j

in order to satisfy orthogonality with respect to ai,t.

Regarding condition (63), we have that

Π(z) ≡ Γ̃1(z) + Ω(z)− Λ− I =
{

(1− z−1)ττ (z)ττ (z
−1)′
}

+
+ Ψ0 + λτ (z)λτ (β)′Λ

where

Ω(z) = −Γ̃2(z)
[
(ξ−1 − δ−1) 0

]
and

Ψ0 ≡ Ψ(z) =
[
(1− β)

(
λ′z,0 + βλ′z,1

)
λ′z,0

]
.

Notice that (i) the left-hand side, Π(z), is exogenously determined by the aggregate economy

that we are trying to implement, and (ii) we have Ψ0 as a degree of freedom to induce an
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arbitrary unconditional covariance on the right-hand side. Writing out the right-hand side

in the time-domain, we have

Π0 = Ψ0 − ρλ′τ,1 +
ρ2

1− ρ2
+

N∑
j=1

λτ,jλ
′
τ,j(I + Λ) +

N∑
j=1

ρjβjλτ,jΛ (65)

Πs = ρsλ′τ,s(I + Λ)− ρs+1λ′τ,s+1 + ρ2sβsΛ. (66)

Initialized at λN+1 = 0, (66) can be solved recursively backwards for a sequence {λτ,s} that

ensures orthogonality with respect to (ci,t−s, yi,t−s)s≥1. Finally, orthogonality with respect to

(ci,t, yi,t) is achieved by setting Ψ0 to satisfy (65), completing the proof.

C.4 Proof of Lemma 3

The result follows from Theorem 1 and Lemma 2. See the discussion in the main text for

details.

C.5 Proof of Proposition 2

The result is a corollary to Proposition 4, which is derived under a less restricting lower

bound on information.

C.6 Proof of Lemma 5

Condition (47) is immediate from (30). Similarly, condition (48) is immediate after noticing

that ai,t is a linear combination of yi,t and ni,t and can, therefore, be omitted from (31). It

follows that in analog to Lemma 2, conditions (30) and (31) together with E[τt] = E[∆τi,t] = 0,

and τt and ∆τi,t being independent MA processes of at most order h̄ are jointly necessary

and sufficient to invoke the conditions of Theorem 1.

It remains to characterize the mappings (τ, ε) 7→ (dy, dŷ, dw) and (∆τ, f) 7→ (∆dc,∆dy,

∆dn,∆dw).

Characterization of aggregate variables The law of motions for dyt and dŷt are imme-

diate from Lemma 1. The law of motion for dwt follows from (44),

dwt = εt + πt + dτx,ft , (67)

where πt is again characterized in Lemma 1.
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Characterization of Delta-variables The law of motions for ∆dyi,t and ∆dci,t are al-

ready characterized in (59) and (60). Subtracting dwt from (43) yields

∆dwi,t = ζ∆dni,t + ∆dci,t + ∆dτhi,t. (68)

Finally, subtracting yt from (1), we get

∆dni,t = ∆dyi,t −∆dai,t. (69)

C.7 Proof of Proposition 3

The result is a corollary to Proposition 1, which is derived under a more restricting lower

bound on information.

C.8 Proof of Lemma 6

The result follows from Theorem 1 and Lemma 5. See the discussion in the main text for

details.

C.9 Proof of Proposition 4

From Lemma 6, we have that τx,fi,t = 0 implying τxi,t = −τx,hi,t . Substituting in (47), combining

with (67)–(69), and evaluating at s = 0, yields

Cov


[
τ ct

−τxt

]
,

ξdτ
x
t + εt

ξdτxt

πt + εt


′ =

− Cov


[

∆τ ci,t

−∆τxi,t

]
,

 ∆dci,t

∆dyi,t −∆dai,t

(ξ−1 − 1)(∆dyi,t −∆dai,t) + ∆dci,t −∆dτxi,t


′ .

Pre-multiplying both sides by [0, 1] and post-multiplying by [−1, 1− ξ−1, 1]′, we get

Cov[τxt , dτ
x
t − πt] = −Cov[∆τxi,t,∆dτxi,t].
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Observe that for any Corr[∆τxi,t,∆τ
x
i,t−1] ∈ [−1, 1] the right-hand side is weakly negative.

Hence it must hold that

Cov[τxt , dτ
x
t − πt] = Var[τxt ]− Cov[τxt , τ

x
t−1]− Cov[τxt , πt] ≤ 0.

Multiplying by ξ2 and rearranging yields (29) in the main text. The proposition follows after

noting that for any Var[τxt ] > 0 the left-hand side of (29) is strictly positive, whereas the

right-hand side is non-positive when Corr[ŷt, πt] ≤ 0.

C.10 Proof of Lemma 4

The result follows from Theorem 1 and Lemma 2. See the discussion in the main text for

details.

D Estimation of Unrestricted Wedge Process

Here we describe the methodology for estimating the unrestricted wedges τ̂t used in Sec-

tion 5.3.

D.1 Description of Methodology

We model the unrestricted wedges as a MA(14) process, which loads on two intrinsic inno-

vations, represented by the 2× 1 vector ut, in addition to the productivity shock εt,

τt = Φε(L)εt + Φu(L)ut,

where Φε(L) and Φu(L) are square-summable lag polynomials in non-negative powers of L,

and εt and ut are orthogonal white noise. W.l.o.g., we normalize Var[ut] = I2, leaving us to

estimate γma ≡ (Φε,Φu, σε). For this purpose, we use the generalized method of moments

(GMM) to minimize the distance between the model’s covariance structure and U.S. data on

real per-capita output, inflation, nominal interest rates, and per-capita hours.29 Let

Ω̃T = vech{Var[(q̃data
t , . . . , q̃data

t−k )]},
29Data range from 1960Q1 to 2012Q4. Real output is given by nominal output divided by the GDP

deflator. Inflation is defined as the log-difference in the GDP deflator. Interest rates are given by the Federal
Funds Effective rate. Hours are given by hours worked in the non-farm sector. Variables are put in per-capita
terms using the non-institutional population over age 16.
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denote the empirical auto-covariance matrix of frequency-filtered quarterly US data for q ≡
(yt, πt, it, nt). We target auto-covariances between zero and k = 8 quarters. For the filtering,

we use the Baxter and King (1999) approximate high-pass filter with a truncation horizon of

32 quarters, which we denote by q̃t ≡ BK 32(qt).
30

To conserve on the 91 parameters that characterize γma, we make two observations, doc-

umented in Figure 4 below. First, Ω̃T is well-described by a VAR(1) process for τt. Second, a

MA(14) truncation of the VAR(1) process that best replicates Ω̃T is almost indistinguishable

(in terms of second moments) from the VAR(1) process itself. Accordingly, we construct γma

by first estimating τt as a VAR(1) that is driven by ut and εt, and then constructing γ̂ma as

the MA(14) truncation of the estimated process.

Let γar denote the 10 parameters characterizing the VAR(1) and σε. Then the estimator

is given by

γ̂ar = argmin
γar

(Ω̃T − Ω̃(γar))
′W−1(Ω̃T − Ω̃(γar)), (70)

where Ω̃(γar) is the model analogue to Ω̃T and W is a diagonal matrix with the bootstrapped

variances of Ω̃T along the main diagonal. To avoid the issues detailed in Gorodnichenko and

Ng (2009), our model analogue Ω̃(γar) is computed after applying the same filtering procedure

to the model that we have applied to the data.

A final challenge for estimating the model is that filtering the model can be computational

expensive. We address this issue by proving the following equivalence results.

Lemma 7. Estimator (70) is equivalent to

γ̂ar = argmin
γar

(ΩT − Ω(γar))
′W̃−1(ΩT − Ω(γar)), (71)

where Ω ≡ vech{Var[(dst, . . . , dst−K)]} and W̃ ≡ (Ξ′W−1Ξ)
−1

for K = k + 2τ̄ . The trans-

formation matrix Ξ is defined in (76).

The lemma establishes an exact equivalence (as opposed to an asymptotic equivalence)

between the original GMM estimator (70) and an alternative estimator where the unfiltered

model is estimated (in first differences) on unfiltered data and the filtering is achieved by

replacing W with W̃ . Using (71) in place of (70), estimation becomes straightforward as the

mapping from γar to Ω(γar) is available in closed form.

30The Baxter and King (1999) filter requires specification of a lag-length τ̄ for the approximation. We set
τ̄ to their recommended value of 12.
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Figure 4: Business cycle comovements in the data and predicted by the estimated model. Note.—All
covariances are multiplied by 100 to improve readability. Dashed black lines show the empirical covariance
structure Ω̃T together with 90 percent confidence intervals depicted by the shaded areas. Solid blue lines
show the corresponding model moments for the VAR(1) case, Ω̃(γ̂ar). Red dots show the model moments for
the truncated MA(14) case, Ω̃(γ̂ma). Each row i and column j in the table shows the covariances between q̃it
and q̃jt−k with lags k ∈ {0, 1, . . . , 8} depicted on the x-axis.

D.2 Fit

Figure 4 compares the predicted model moments with the targeted data moments. The

dashed black lines show the empirical covariance structure Ω̃T along with 90-percent con-

fidence intervals (depicted by the shaded areas). The solid blue and red lines show the

corresponding moments for the estimated model for the VAR(1) and MA(14) truncation of

the wedges, respectively. Each row i and column j in the table of plots shows the covariances

between q̃it and q̃jt−k with lags k ∈ {0, 1, . . . , 8} depicted on the horizontal axis. Despite the

parametric restriction on τt and at and the fact that we have less shocks than data series, the

unrestricted-wedge model does a very good job at capturing the auto-covariance structure

of the four time series. In addition, there is no notable difference between the VAR(1) and

MA(14) truncation of τt.
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D.3 Proof of Lemma 7

Let

J =
(

Ω̃T − Ω̃(γ)
)′
W−1

(
Ω̃T − Ω̃(γ)

)
(72)

denote the penalty function in terms of BK-filtered moments, where the filter is applied

to both the data and the model. In this appendix, we demonstrate how the penalty

can be expressed in terms of the variance over unfiltered first-differenced moments, Ω ≡
vech

{
Var

(
dqtt−K

)}
, where d is the first-difference operator, and K ≡ k+2τ̄ with τ̄ denoting

the approximation horizon of the BK-filter.31 Specifically, for any positive-semidefinite W

we show that J in (72) is equivalent to

J = (ΩT − Ω(γ))′ W̃−1 (ΩT − Ω(γ)) , (73)

with W̃ ≡ (Ξ′W−1Ξ)
−1

replacing W (a closed-form expression for Ξ is given below).

The Baxter and King (1999) filtered version of st takes the form

q̃t =
τ̄∑

j=−τ̄

ajqt−j

where q̃t is stationary by construction. For the high-pass filter used in this paper, the weights

{aj} are given by

aj = ãj −
1

2τ̄ + 1

τ̄∑
j=−τ̄

ãj

with

ã0 = 1− ω̄/π, α̃j 6=0 = − sin(jω̄)/(jπ), ω̄ = 2π/32.

To construct the filter-matrix Ξ, rewrite q̃t in terms of growth rates to get

q̃t =
τ̄∑

j=−τ̄

∞∑
l=0

ajdqt−j−l.

Noting that
∑τ̄

j=−τ̄ aj = 0, we can simplify to get

q̃t = Bdqt+τ̄t−τ̄−j

31The first-difference filter is applied to the unfiltered variables to ensure stationarity for variables that
have a unit root. Our transformation includes an adjustment term that corrects for the fact that the filtered
moments in Ω̃ are about levels rather than first-differences.

49



where

B = [b−τ̄ , . . . , bτ̄ ]⊗ In, (74)

n = 4 is the number of variables in q̃t, and bs =
∑s

j=−τ̄ αj.

Letting Lj define the backshift matrix

Lj =
[
0n(2τ̄+1),nj, In(2τ̄+1), 0n(2τ̄+1),n(k−j)

]
, (75)

we then have that

Σ̃j ≡ Cov(q̃, q̃t−j) = BL0ΣKL′jB
′,

or, equivalently,

vec(Σ̃j) = (BLj ⊗BL0) vec(ΣK).

To complete the construction of Ξ, define selector-matrices P0 and P1 such that

vech(Σ̃k) = P0


vec(Σ̃0)

...

vec(Σ̃k)


and

vec(ΣK) = P1vech(ΣK).

Stacking up vec(Σ̃j), we then get

Ω̃ = ΞΩ

where

Ξ = P0


BL0 ⊗BL0

...

BLk ⊗BL0

P1 (76)

with B and Lj as in (74) and (75). Substitution in (72) yields (73).

E Market Clearing in the Primal Economy

There are three sets of competitive markets operating at each date t in our model: a con-

tinuum of labor markets i ∈ [0, 1], an aggregate market for output, and the bond market.

Local labor market clearing is ensured by full information regarding Wi,t. As usual, market

clearing for bonds is implied by households’ budget constraints in conjunction with good
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market clearing. Imposing goods market clearing in the primal economy yields

Et[rt + dτ ct+1] = Et[dŷt+1] = ξEt[dτxt+1]. (77)

For markets to clear, the real interest rate rt = φπt−Etπt+1 has to adjust so that consumers’

demand—taking into account households’ errors in their consumption decisions τ ct —matches

the output gap as determined by τxt . Clearly, for any stationary process for τ ct and τxt , there

exists a process for rt so that (77) holds.

The key insight is that in the primal economy, any error made by households in their

consumption choice as reflected in Et[dτ ct+1] is endogenously offset by fluctuations in the

real interest rate. Intuitively, the degree of “awareness” regarding variations in the real

interest rate endogenously adjusts so that prices can perform their market clearing role.

This is fundamentally different from a parametric structure in which the expectation error

is determined endogenously and there may not be any solution to (77).

As an example, suppose consumers are perfectly informed about future consumption, so

we can interpret Et[rt+dτ ct+1] as the average expected interest rate, Ēt[rt]. With a parametric

information structure, we would need to ensure that Ēt[rt] is sufficiently responsive to the

output gap, ξτxt , which fails, e.g., if consumers have no information regarding rt. By contrast,

the primal approach endogenously pins down Ēt[rt] as the market-clearing object and fixing

τ ct merely determines how rt fluctuates with τxt so that rt + Et[dτt+1] clears the market.
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