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Abstract

We develop a methodology to estimate DSGE models with incomplete information,

free of parametric restrictions on information structures. First, we define a “primal”

economy in which deviations from full information are captured by wedges in agents’

equilibrium expectations. Second, we provide implementability conditions, which en-

sure the existence of an information structure that implements these wedges. We apply

the approach to estimate a New Keynesian model in which firms, households and the

monetary authority have dispersed information about business conditions and produc-

tivity is the only aggregate fundamental. The estimated model fits the data remarkably

well, with informational shocks able to account for the majority of U.S. business cycles.

Output is driven mainly by household sentiments, whereas firm errors largely determine

inflation. Our estimation indicates that firms and the central bank learn the aggregate

state of the economy quickly, while household confusion about aggregate conditions is

sizable and persistent.
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1 Introduction

Many prominent theories in macroeconomics are based on incomplete information. Among

their applications, such theories offer a structural interpretation of cyclical fluctuations, for-

malizing the widespread idea that business cycles are driven by waves of optimism and pes-

simism among consumers and firms (Lorenzoni, 2009; Angeletos and La’O, 2013; Benhabib,

Wang and Wen, 2015). However, very few of these models have been investigated quanti-

tatively, mainly because of technical difficulties arising from the introduction of dispersed

information in general equilibrium frameworks and the challenge of specifying ex ante plausi-

ble information structures to explore. This paper develops a new approach that avoids these

difficulties, and uses it to explore the quantitative potential of dynamic stochastic general

equilibrium (DSGE) models with incomplete information.

Our approach defines a “primal” economy in which deviations from full information are

summarized by wedges in agents’ equilibrium expectations. We then provide necessary and

sufficient conditions that ensure the existence of an information structure that is consis-

tent with the expectation errors implicit in these wedges. Subject to these implementability

conditions, the set of dynamics spanned by expectational wedges in the primal economy is

equivalent to the set of dynamics that is feasible in the incomplete-information economy.

Exploiting this equivalence, we show how to estimate DSGE models with incomplete infor-

mation using standard tools developed for full-information economies and without imposing

parametric restrictions on information structures.

We apply our approach to estimate a dispersed-information version of an otherwise stan-

dard New-Keynesian model, in which shocks to productivity are the only fundamental source

of aggregate volatility. The model allows households, firms, and the monetary authority to

be imperfectly informed about both local and aggregate economic conditions. While the

incomplete-information version of our economy is generally hard to solve, the corresponding

primal economy permits a simple aggregate representation. The representation resembles a

standard New Keynesian model with shocks to demand, markups and interest rates. Specifi-

cally, expectational errors by households map into a “demand wedge” in the New Keynesian

IS curve, expectational errors by firms’ map into a “supply wedge” in the Phillips curve,

and errors made by the monetary authority replace the usual exogenously-specified shock to

the interest target in the Taylor rule. The behavior of these wedges is constrained by the

implementability conditions characterized by our approach.

We estimate the model using the generalized method of moments, minimizing the distance

between the auto-covariance structure generated by the model and U.S. data on output, em-

ployment, inflation, and interest rates. We find that the estimated model does a remarkably
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good job at matching the business cycle comovements found in the data, essentially replicat-

ing the vast majority of (auto) covariances within the confidence region of the data. This

is in stark contrast to the full-information benchmark economy, driven only by technology

shocks, which cannot replicate the joint comovement of output, employment and inflation

seen in the data.

Essential for the empirical performance of the model is its ability to generate wedges that

are correlated across equations. In particular, there is a strong negative correlation between

the wedge entering the aggregate Philips curve and both the wedges in the aggregate Euler

equation and the Taylor rule. While it is typically difficult for full-information models with

structurally uncorrelated shocks to generate perturbations that are correlated across equa-

tions, expectational wedges are naturally correlated for two reasons. First, information can

be correlated across different types of agents. E.g., a joint optimism regarding productivity

could generate correlation across firms and household wedges. Second, because the objectives

of agents are strategically interdependent, errors of one type of agent naturally translate also

into errors of other types as long as agents are not fully aware of one another’s errors. We

show that the latter can account for virtually all of the estimated correlation patterns.

In our empirical specification, expectational wedges are driven by three independent in-

novations. First, they correlate with productivity shocks, reflecting imperfect information

regarding the aggregate productivity process. Specifically, we find that households learn

about productivity innovations only gradually, implying a slow adjustment of output in re-

sponse to TFP shocks. By contrast, we cannot reject that firms and the monetary authority

are fully aware of aggregate productivity, resulting in countercyclical movements in infla-

tion and the Feds funds rate. The dynamics in response to productivity shocks account for

roughly 10 percent of the business-cycle fluctuations in output and employment, and roughly

20 percent of inflation.1

The two remaining innovations reflect that agents may also anticipate changes in economic

conditions that are never realized, leading to business cycle fluctuations that are driven

purely by expectations. We find that the first of these two shocks is mainly driven by waves

of optimism and pessimism on the part of households, inducing procyclical fluctuations in

output, employment and inflation akin to a “demand shock”. Again, we cannot reject that

the monetary authority is fully aware of this shock, which explains the procyclical movement

in interest rates. Firms, on the other hand, learn only gradually about the household error,

1The small contribution of productivity is consistent with both recent DSGE estimations and the structural
VAR literature, which rarely finds that productivity shocks explain more than one quarter of output cyclicality
(Shapiro and Watson, 1988; King et al., 1991; Cochrane, 1994; Gali, 1999; Christiano, Eichenbaum and
Vigfusson, 2003; Smets and Wouters, 2007).
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dampening the initial inflation response.

Finally, we find that the economy’s response to the third innovation is fully driven by firms’

beliefs about current and future business conditions, leading them to cut prices. The inflation-

response to these expectational shocks is extremely short-lived, however, reflecting a quick

error correction on the side of firms with an half-life of less than one quarter. In line with the

short-lived nature of firm errors, the errors made by households and the monetary authority

are such that we cannot reject that they are unaware of the shock to firms expectations.

In particular the lack of adjustment in interest rates, in turn, dampens the output effect

and reinforces the impact on prices, leading the shock be a main driver of inflation but not

output.

Our baseline estimation imposes few restrictions regarding what information is potentially

available to the agents in our economy. Instead we use our estimates to infer a plausible

information structure that implements the estimated expectation processes. Our results

indicate that expectational errors by firms and the central bank are largely confined to within

a one-year window, consistent with a lack of reliable real time statistical information. Outside

this window, we cannot reject that firms and the central bank have perfect information. By

contrast, implementing household expectations requires that they be persistently confused

about several aggregate variables.

The methodology developed in this paper is related to the literature on information-

robust predictions by Bergemann and Morris (2013, 2016) and Bergemann, Heumann and

Morris (2014). These papers demonstrate the equivalence between Bayes equilibria in games

with incomplete information and Bayes correlated equilibria. The primal approach devel-

oped in this paper is similar in that it also demonstrates the equivalence between a class of

incomplete-information economies with another class of full-information models. It is more

general, however, as it is not limited to static game environments, but equally applies to

dynamic market economies. Moreover, the primal approach developed in this paper gives

straightforward implementability conditions, and it extends to arbitrary “minimal informa-

tion requirements” that can be imposed by the researcher from the outset.

On the applied side, our analysis relates to a recent literature exploring business cycle

models with incomplete information. While the literature is mostly theoretical, there are now

a few studies with a quantitative focus. In particular, Angeletos, Collard and Dellas (2015)

explore a version of Angeletos and La’O (2013); Blanchard, L’Huillier and Lorenzoni (2013)

estimate a simplified version of Lorenzoni (2009); Melosi (2014, 2016) estimates a variant

of Woodford (2003); and Maćkowiak and Wiederholt (2015) calibrate a particular DSGE

model with rational inattention. A notable difference with respect to these papers is the
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flexibility of expectation dynamics considered in this paper. In particular, our approach does

not require us to take an ex-ante stand on which agents are affected by information-frictions,

how information is shared in the cross-section of agents, or any other parametric properties of

the information structure. Instead it allows us to evaluate the empirical performance across

all information structures and let the data decide on which provides the best fit.

At a methodological level, the closest to our approach are Jurado (2016)—who estimates a

model with near-rational belief distortions—and Angeletos, Collard and Dellas (2015)—who

bypass the computational difficulties of incomplete information by relaxing the common prior

assumption. Our approach allows for a similar generality of application, while ensuring that

expectation errors are consistent with rational expectations of all agents.

In its ability to reduce the computational burden of solving (and estimating) incomplete

information models, our approach paper also relates to Rondina and Walker (2014), Acharya

(2013) and Huo and Takayama (2015), who use frequency-domain techniques to obtain ana-

lytical solutions in certain models, and Nimark (2009) who explores the asymptotic accuracy

of a finite-state approximation approach to a certain class of dispersed information models.

This paper is also related to the business cycle accounting literature in the tradition of

Chari, Kehoe and McGrattan (2007). These papers consider simple economies augmented

by a number of reduced-form wedges to equilibrium conditions. There are two important

differences between papers in that tradition and the approach developed in this paper. First,

in contrast with the business cycle accounting literature, we approach the wedges in our

economy with a single structural interpretation in mind, supported by our equivalence result.

Second, while the wedges in the business cycle accounting literature are exactly identified by

the data, the information wedges in our economy are generally over-identified, both because

we use more data series than shocks and because of the restrictions imposed by our structural

interpretation of wedges as shocks to information. Conceptually the second source of over-

identification is crucial as it precisely ensures that the estimated wedges can be implemented

by a valid information structure.

The paper is structured as follows. Section 2 sets up the model economy. Section 3

describes the primal approach. Section 4 details our empirical strategy. Section 5 presents

the baseline empirical results. Section 6 explores what types of information structures are

in line with our results and demonstrates a particular implementation strategy. Section 7

concludes.
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2 The Model Economy

2.1 Setup

The model is a standard New Keynesian model where households, firms and the monetary

authority have a generic set of (possibly incomplete) information regarding both local and

aggregate economic conditions. Households and firms are located on a continuum of islands,

indexed by i ∈ [0, 1]. On each island, a representative household interacts with a continuum

of price-setting firms in a local labor market. Firms use the labor provided by the household

to produce differentiated intermediate goods indexed by j ∈ [0, 1]. A competitive final goods

and distribution sector, operating in the mainland, uses these goods as inputs to produce

and distribute consumption to households.

Households The preferences of the household on island i are given by

E

{
∞∑
τ=0

βτU(Ci,t+τ , Ni,t+τ ) | Ihi,t

}

with

U(Ci,t, Ni,t) = logCi,t −
1

1 + ζ
N1+ζ
i,t ,

where Ni,t is hours worked, Ci,t is final good consumption, β ∈ (0, 1) is the discount factor,

ζ ≥ 0 is the inverse of the Frisch elasticity of labor supply, and Ihi,t is the set of information

available to household i at time t. The household’s budget constraint is

Pi,tCi,t +Qi,tBi,t ≤ Wi,tNi,t +Bi,t−1 +

∫ 1

0

Dij,t dj,

where Pi,t is the price of the final good, Wi,t is the nominal wage rate, Qi,t is the nominal

price of a riskless one-period bond, Bi,t are bond holdings, and Dij,t are the profits of firm

j on island i. Prices for bonds and final consumption are island-specific due to the presence

of idiosyncratic distribution costs (further detailed below). Bonds are in zero net supply, so

market clearing requires
∫ 1

0
Bi,t di = 0. No other financial assets can be traded across islands,

leaving households exposed to idiosyncratic income risks.
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Intermediate-goods producers Each good (i, j) ∈ [0, 1]2 is produced by a monopolisti-

cally competitive firm which has access to the production technology

Yij,t = Ai,tN
α
ij,t, (1)

with 0 < α ≤ 1. Firms compete in prices à la Calvo (1983). Each period, a firm resets its

price with probability 1− λ and keeps it unchanged with probability λ. The firms’ objective

is to maximize the expected market value of their profits, discounted at the market rate Qi,t,

E

{
∞∑
τ=0

λτQi,t+τ

(
Pij,tYij,t+τ |t −Wi,t+τNij,t+τ |t

)
| Ifi,t

}
,

where Yij,t+τ |t denotes the demand for good (i, j) in period t+τ when the price was last reset

in period t, Nij,t+τ |t is the corresponding labor input, and Ifij,t is the information available to

firms on island i at time t.

The productivity Ai,t consists of an aggregate and an island-specific component,

logAi,t = logAt + ∆ai,t,

where the aggregate productivity follows a random walk process given by

logAt = logAt−1 + εt

where εt is i.i.d. across time with zero mean and constant variance. The island-specific

component ∆ai,t follows a time-invariant, stationary random process that is i.i.d. across

islands and is normalized so that
∫ 1

0
∆ai,t di = 0.

Final-good and distribution sector There is a competitive final-goods sector which

aggregates intermediate input goods (i, j) ∈ [0, 1]2, using the technology

Yt =

(∫ 1

0

∫ 1

0

Zi,tY
θ−1
θ

ij,t di dj

) θ
θ−1

,

where θ > 1 is the elasticity of substitution among goods, Yij,t denotes the input of interme-

diate good (i, j) at time t, and Zi,t is an idiosyncratic demand-shifter with a time-invariant,

stationary process that is i.i.d. across islands and satisfies
∫ 1

0
log(Zi,t) di = 0. Profit maxi-
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mization implies that input demands are equal to

Yij,t =

(
Pij,t
Pt

)−θ
Zθ
i,tYt, (2)

where Pt is the aggregate price index given by

Pt =

(∫ 1

0

∫ 1

0

Zθ
i,tP

1−θ
ij,t di dj

) 1
1−θ

.

To distribute the consumption good to island i, final good firms must incur a random

“iceberg” trade cost, such that exp(ν1
i,t) units of the final good must be shipped for 1 unit to

arrive in island i. Similarly, nominal bonds are intermediated by a competitive distribution

sector with random distribution costs exp(−ν2
i,t). Standard no-arbitrage conditions imply

that the price of consumption in island i is given by

log(Pi,t) = log(Pt) + ν1
i,t,

and the price of nominal bonds is given by

log(Qi,t) = log(Qt)− ν2
i,t.

While the realizations of ν1
i,t and ν2

i,t are known by the distributors, they are not necessarily

contained in Ihi,t. The role of these assumptions is to limit the ability of households to infer

the aggregate shocks from their observations of the final goods and bonds prices.2 We assume

that ν1
i,t and ν2

i,t follow a time-invariant, stationary process that is i.i.d. across islands, ruling

out any direct impact at the aggregate. The process is normalized so that
∫ 1

0
log(νmi,t) di = 0

for m ∈ {1, 2}.

Monetary policy To close the model, we use a simple monetary policy rule to pin down

the nominal bond price. Letting it = − log(Qt), the central bank sets nominal bond prices

2As argued by Lorenzoni (2009), the ability of agents to infer the economy’s aggregate state is in practice
likely to be impaired by a larger number of shocks, by model misspecification, and by the possible presence of
structural breaks. Introducing stochastic noises to the information of agents is a tractable way to mimic these
complications in the context of a relatively simple model. Strategies with a similar effect include introducing
random shocks to consumption baskets (Lorenzoni, 2009), limiting trade to only a finite set of suppliers
(Angeletos and La’O, 2013), and using noise traders to perturb prices (e.g., Hellwig, 1980).
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such that3

it = E[φyŷt + φππt|Ibt ], (3)

where πt ≡ log(Pt/Pt−1) is the inflation rate, ŷt ≡ log(Yt/At) is the gap (up to an omitted

constant) between actual output and potential output under flexible prices and full infor-

mation, φy > 0 and φπ > 1 parametrize the central bank’s desired response to the output

gap and inflation, and Ibt is the central bank’s information in period t. Note that the rule

does not feature a smoothing parameter or an exogenous shock since both features may arise

endogenously when the monetary authority has incomplete information.

Information Until now the only assumption on information that we have made is that

within islands all firms share the same information set. Henceforth, we also assume symmetry

across islands and time in the sense that the distribution of signals is identical for all (Ifi,t, Ihi,t)
and is stationary for all (Ifi,t, Ihi,t) and Ibt .

While for the most part we do not further restrict these information sets from the outset,

we do impose some minimal structure to guide our analysis. First, we assume that firms and

households observe the local productivity Ai,t, local consumption Ci,t, local consumer and

producer price indexes Pi,t and P̄i,t, the local bond price Qi,t, and the local wage Wi,t. In

equilibrium, these statistics span most local variables such as Ni,t, Bi,t and Di,t, and ensure

that households are aware of their feasible consumption sets. Second, we impose a bound on

the horizon at which agents in the economy can be confused about past aggregate variables.

In particular, letting Xt ≡ (Yt, Pt, Qt, Nt), we impose that Xt−h̄ is known at date t for some

h̄ > 0. Third, it will be convenient to explicitly impose some basic principles of rationality

at this point, namely that firms, households and the monetary authority are aware of their

expectations (or, equivalently, that they are aware of their own actions4), and that all agents

perfectly recall all previously acquired information.

Let Θi,t and Θb,t denote the resulting lower bounds on the date-t information available to

firms, households and the monetary authority so that

Θi,t ⊆ Ifi,t, Θi,t ⊆ Θh
i,t and Θb,t ⊆ Ibt . (4)

Then given the above considerations, we have that

Θb
t = {Qt, Xt−h̄} ∪Θb

t−1 (5)

3The rule also contains a constant intercept, − log β− logαα/(1+ζ), ensuring consistency with the natural
rate at the zero-inflation steady state. The term is omitted as it drops out after log-linearizing the model.

4For consumers and firms, knowledge of Ci,t and P̄i,t is sufficient. For banks we impose awareness of Qt.
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and

Θi,t = {Ai,t, Ci,t, Pi,t, P̄i,t, Qi,t,Wi,t, Xt−h̄} ∪Θi,t−1. (6)

2.2 Equilibrium conditions

Following standard practice, we focus on a log-linear approximation to the model about its

non-stochastic, zero-inflation steady state. In what follows, lower-case letters denote log-

deviations of a variable from its steady-state value.

From the firms’ maximization problem, it follows that reset-prices on island i satisfy the

recursive relation

p∗i,t = (1− λβ)E[si,t|Ifi,t] + λβE[p∗i,t+1|Ifi,t], (7)

where si,t is the profit-maximizing, flexible-price target under full information. As firms’

demand has constant elasticity, desired markups are constant and si,t equates to marginal

costs, wi,t +nij,t− yij,t. Substituting for the local labor supply relation ζni,t = wi,t− pi,t− ci,t
and the demand curve (2), we get

si,t = p̄i,t + ξ(ŷi,t + µi,t),

where

p̄i,t = λp̄i,t−1 + (1− λ)p∗i,t (8)

is the producer price-index on island i, ŷi,t = yi,t − ai,t is the island-specific output gap,

µi,t = (α/(ζ+1)) · (ci,t−yi,t+pi,t− p̄i,t) is island i’s nominal trade-balance (times a constant),

and ξ ≡ (ζ + 1) / (α + θ(1− α)) is the output elasticity of the flexible-price target. Equations

(7) and (8) can be manipulated to get

πi,t = E[κ(ŷi,t + µi,t) + βπi,t+1|Ifi,t] (9)

with πi,t ≡ p̄i,t − p̄i,t−1 and κ ≡ (1− λβ)(1− λ)ξ/λ.

Equation (9) together with the households’ Euler equation

ci,t = E[ci,t+1 − ii,t + pi,t+1 − pi,t | Ihi,t], (10)

the market clearing condition yt =
∫ 1

0
ci,t di, the resource constraint yt = at + αnt, the

requirement that the aggregate price index is consistent with both consumer and producer

prices pt =
∫ 1

0
pi,t di =

∫ 1

0
p̄i,t di, and the monetary policy rule (3) define the equilibrium to

this economy.
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3 A Primal Approach to Solving Incomplete

Information Models

We now describe the methodology used to characterize the set of incomplete-information

equilibria in the model economy. Our approach is quite different from the usual approach that

first fixes an information structure for all agents and then searches for a fixed point between

beliefs and equilibrium dynamics. In the presence of incomplete information, finding this fixed

point can be challenging, often involves high-dimensional state spaces, and results are known

to be sensitive to the precise informational assumptions entertained. We side-step these issues

by providing an explicit characterization of all feasible belief dynamics that are implementable

with some information structure. With this characterization at hand, we then can fix any

feasible process for equilibrium beliefs and treat its deviation from the corresponding full-

information beliefs as a primitive of the model. This procedure essentially transforms the

incomplete-information economy into a full-information wedge-economy, allowing us to use

standard tools to complete the characterization of equilibrium. In this section, we explain

the approach in detail.

3.1 The primal economy

Definition We begin by defining a primal version of our economy. Let Et[·] ≡ Et[·|I∗t ] de-

note the full-information expectations operator, where I∗t contains the history of all variables

realized at date t.5 The primal economy is constructed by replacing for m ∈ {b, f, h} all

expectations operator E[·|Imi,t] by Et[·] + τmi,t , where

τmi,t ≡ E[·|Imi,t]− Et[·]

defines an information wedge that is treated as an exogenous stochastic process in the context

of the primal economy. That is, the primal economy treats the gap between equilibrium ex-

pectations and full-information as a primitive of the model, transforming the model economy

into a wedge-economy in which all expectations are taken with respect to full information.

Once we have characterized feasible processes for these wedges, we can specify any such

feasible process and solve the equilibrium using standard full-information techniques.

5Notice that which variables are realized at date t is to some extend definitional, requiring the researcher
to take a stand on what is potentially knowable at date t. In particular, I∗t may well contain fundamental
innovations dated in the future if these innovations are assumed to be realized at date t as in the news
literature. Henceforth, we assume that for all aggregate random processes, innovation are not knowable in
advance, so that there is no role for news in the full-information economy.
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In the model economy, we have three types of expectational equations: the island-specific

evolution of producer prices (9), the island-specific Euler equations (10), and the monetary

policy rule (3). The corresponding counterparts in the primal economy are given by:6

πi,t = Et[κ(ŷi,t + µi,t) + β(πi,t+1 − τ fi,t+1)] + τ fi,t (11)

ci,t = Et[
(
ci,t+1 − τhi,t+1

)
− ii,t + pi,t+1 − pi,t] + τhi,t (12)

it = Et[φyŷt + φππt] + τ bt . (13)

Here τhi,t is the prediction error, relative to full information, made by household i about its

effective wealth and the returns on saving. A positive prediction error lets households increase

their consumption relative to the optimal level under full information. On the firms’ side,

τ fi,t is the prediction error, relative to full information, regarding present or future marginal

cost of production, reflecting a misjudgment about either productivity or consumers’ demand.

Finally τ bt is the prediction error, relative to full information, made by the monetary authority

regarding its interest rate target.

Equilibrium in the primal economy The equilibrium in the primal economy is defined

by the equations stated in Section 2.2, where (3), (9) and (10) are replaced by (11), (12)

and (13). Unlike the incomplete-information economy, in which aggregation involves average

expectation operators and hence depends on the cross-sectional distribution of beliefs, the

primal economy permits a simple aggregate representation. Letting τ ft =
∫ 1

0
τ fi,t di and τht =∫ 1

0
τhi,t di and integrating over (11) and (12) we get

πt = κŷt + βEt[πt+1 − τ ft+1] + τ ft (14)

and

ŷt = Et[ŷt+1 − τht+1 − it + πt+1] + τht . (15)

Equations (14) and (15) closely resemble the standard New Keynesian IS and Phillips curve,

augmented by informational demand and supply wedges τht and τ ft . The system is completed

by the Taylor rule (13), yielding a three-equation system that can be used to solve for the

equilibrium dynamics of πt, ŷt and it.

6In practice there are multiple isomorphic ways to define the wedges. Here we define the firm and
household wedge after rewriting (9) and (10) in their non-recursive forms. With this normalization all our
wedges capture the gap relative to the choices that each agent would take if he or she had full information
at t and all future dates, taking as given the equilibrium choices of all other agents.
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3.2 An Equivalence Theorem

We now discuss implementability of the information wedges. Let T denote a stochastic

process for Tt ≡ {τ fi,t, τhi,t}1
i=0 ∪ τ bt and let E(T ) denote an equilibrium in the primal economy

induced by T .7 We assume E(T ) to have a stationary Gaussian distribution (see below for

a discussion on how our results extend to non-stationary and non-Gaussian cases). The

following theorem states our main result.

Theorem 1. Fix a E(T ). Then there exists an information structure consistent with (4)

that implements T , and hence E(T ), in the incomplete-information economy if and only if

for all i and t it holds that (i) E[Tt] = 0 and (ii)

E[τ bt θ] = 0 for all θ ∈ Θb,t, (16a)

E[τ fi,tθ] = 0 for all θ ∈ Θi,t, (16b)

E[τhi,tθ] = 0 for all θ ∈ Θi,t. (16c)

The theorem gives two conditions that are jointly necessary and sufficient for T to be

implemented by some information structure. Condition (i) is a simple rationality requirement

that agents cannot be systematically wrong in the long-run. Condition (ii) is an orthogonality

requirement between all the information wedges and the minimal information sets Θb,t and

Θi,t. The necessity of this restriction is the familiar principle that expectation errors must be

orthogonal to all available information. The novel part is the sufficiency of condition (ii). For

any E(T ) with E[Tt] = 0, we can always construct an information structure that implements

the joint process E(T ) as long as it satisfies (16). The following example illustrates this in a

simple case. The general proof is given in Appendix A.1.

Example Consider an economy defined by a single equilibrium condition, yt = E[at|It],
where E[at] = 0, and let Θt = {yt−s}s≥0. The primal economy is given by

yt = at + τt. (17)

Let Et = (yt, at, τt) be a stationary Gaussian process satisfying (17). Theorem 1 states that Et
is implementable by some {It}, satisfying yt ∈ It for all t, if and only if (i) E[τt] = 0 and (ii)

E[τtyt−s] = 0 for all s ≥ 0. The necessity of conditions (i) and (ii) is immediate, since optimal

7There is no need for the equilibrium in the primal economy to be unique. If there are multiple E(T ) for a
given T , our results hold with respect to each of them. Even if the equilibrium E(T ) in the primal economy is
unique given T , the incomplete-information economy may still feature multiplicity as T itself may be driven
by sunspot-realizations as in, e.g., Benhabib, Wang and Wen (2015).
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inference requires that expectation errors are orthogonal to variables in the information set

and are unpredictable.

To see why the conditions are also sufficient, suppose that It = {ωt−s}s≥0 where ωt =

at + τt. That is, each period, the agent receives a new signal ωt that has the same joint

distribution over (ωt, Et) as the “equilibrium” belief yt that we wish to implement. Projecting

at onto yt ≡ {yt−s}s≥0, we have

E[at|It] = Cov(at, y
t)[Var(yt)]−1yt. (18)

Notice that

Cov(yt, y
t) =

[
1 0 0 · · ·

]
Var(yt). (19)

Further notice that (17) in combination with condition (ii) gives Cov(at, y
t) = Cov(yt −

τt, y
t) = Cov(yt, y

t). We can thus use (19) to substitute out Cov(at, y
t) in (18) to get

E[at|It] = yt.

We conclude that as long as conditions (i) and (ii) hold, there exists a simple information-

structure {It} that implements Tt. Intuitively, observing the equilibrium expectation yt is a

sufficient statistic for forming E[at|It], giving us a simple means of implementing Tt.8
The full proof in the appendix generalizes to dynamic economies involving many equa-

tions, variables, and information sets. As E(T ) is an equilibrium in the primal economy, we

can use the logic above to implement the beliefs implied by the primal economy for each infor-

mation set, assured that the remaining equilibrium conditions of the incomplete-information

economy hold by construction. Moreover, the full proof also allows for arbitrary minimal

information requirements.

Remarks Although our notation in presenting Theorem 1 is motivated by our model econ-

omy, the proof of the theorem is generic and can be applied to virtually any rational expec-

tations DSGE model. Nevertheless we make a few assumptions, some of them implicit, that

are worth discussing.

First, we require stationarity of E . On the one hand, this rules out non-stationary pro-

cesses of Tt. On the other hand, this requires the primal economy to be stationary. In many

8The argument is related to the one given in Bergemann and Morris (2016) who show the equivalence
between Bayes correlated equilibria and static Bayesian games with incomplete information. Our approach
of formulating a primal economy and characterizing implementability in terms of a simple orthogonality
condition is more general, however, as it straightforwardly applies to dynamic economies and allows for
arbitrary minimal information requirements.
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cases, an appropriate transformation can be used to induce stationarity in the primal econ-

omy, even when the economy is fundamentally non-stationary. E.g., in our case, it suffices to

define the primal economy in terms of the output gap ŷt as in (13)–(15), ensuring stationarity

of E as long as T is stationary.

Second, while we assume E to be Gaussian, the assumption is not needed when one

is only interested in implementing the auto-covariance structure of Et. In our empirical

application, we make sure that our estimator indeed only uses information regarding the

covariance structure, so that we do not need to make any distributional assumptions regarding

T to invoke our theoretical results.

Third, while in our case each wedge corresponds to a unique information set, Theorem 1

applies to settings in which multiple wedges are associated with a single information set.

Formally, the theorem extends to such cases by treating all expectations and wedges as

vectors. An immediate corollary is that whenever two distinct information sets I1 and I2

share the same minimal information requirement Θ, the set of information-wedges supported

by (I1, I2) is identical to the one supported under the additional requirement that I1 = I2.

In our case this implies that imposing common knowledge within islands places no additional

restrictions on Tt.9
Forth, while we take the minimal information-sets Θb,t and Θi,t to be as in (5) and (6),

the theorem applies to any minimal information requirement desired by the researcher. The

only restriction is that for each wedge τ the corresponding set Θ must at least contain the

full history of all equilibrium expectations corresponding to the wedge (unless the researcher

wants to relax the assumption of perfect recall).

3.3 Wedges in the aggregate economy

If the researcher is interested in the ability of the incomplete information model to match

aggregate data, as we are in this paper, then the crucial question is to what degree the

orthogonality conditions in Theorem 1 restrict the set of feasible dynamics for the aggregate

wedges T̄t ≡ (τ bt , τ
f
t , τ

h
t ). From (5), we have

E[τ bt xt−h̄−j] = 0, ∀j ≥ 0. (20)

E[τ bt it−j] = 0, ∀j ≥ 0. (21)

9Despite it being w.l.o.g. in terms of Tt, we do not impose common knowledge here, because it restricts
the means to implement a given Tt, ruling out the particular narrative that we find most plausible in light of
our estimation below.
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Similarly, orthogonality between Xt−h̄ and (τ fi,t, τ
h
i,t) implies

E[τ ft xt−h̄−j] = 0, ∀j ≥ 0 (22)

E[τht xt−h̄−j] = 0, ∀j ≥ 0. (23)

The presence of local price and productivity shocks guarantees that subject to these restric-

tions, any aggregate wedge process T̄t can be supported by sufficiently large local shocks.

To build an intuition why this is the case, consider a variant of the example given above,

where yi = ai + τi and Θi = {yi} for i ∈ [0, 1]. The orthogonality condition in Theorem 1

imposes two restrictions on the distribution of (yi, ai, τi). First, it implies that Var[ai] =

Var[yi] + Var[τi], constraining the variance of τi to satisfy Var[τi] ≤ Var[ai]. Second, it

pins down the covariation of τi with ai, Cov[ai, τi] = −Var[τi]. Now consider (ȳ, ā, τ̄) =∫ 1

0
(yi, ai, τi)di. It can be shown that by varying the correlation of (τi, ai) in the cross-section,

one can implement any distribution over (ȳ, ā, τ̄) that satisfies

Var[τi] ≥
(Cov[τ̄ , ā] + Var[τi])

2

Var[ai]− Var[ā]
+ Var[τ̄ ]

and ȳ = ā + τ̄ . Clearly for any Var[τi] > Var[τ̄ ], the condition is non-binding for some

sufficiently volatile ai.
10 Intuitively, when (ai − ā) is sufficiently volatile, we can support

aggregate information-wedges using correlated errors about the idiosyncratic variations in the

agents’ objectives, regardless of what is the aggregate uncertainty about ā. The literature has

proposed various channels that may give rise to such correlation patterns, including correlated

noise shocks (Lorenzoni, 2009), correlated shocks to higher-order expectations (Angeletos and

La’O, 2013), and the presence of informational sunspots (Benhabib, Wang and Wen, 2015).

Our empirical strategy in this paper is to proceed with the minimal restrictions on the

aggregate wedges given in (20)–(23). With the estimated model at hand, we then construct

processes for ν1
i,t, ν

2
i,t, zi,t, ∆ai,t and for the island-specific wedges τ fi,t and τhi,t that support

the estimated processes for τ ft and τht subject to the restrictions in Theorem 1. The details

are provided in Appendix A.2.

10E.g., fix Var[τi] = 2Var[τ̄ ] + Cov[τ̄ , ā]. Then the condition holds for any Var[ai] ≥ Var[ā] + 4(Var[τ̄ ] +
Cov[τ̄ , ā]), which also suffices to satisfy the idiosyncratic variance bound Var[τi] ≤ Var[ai] (the covariance
condition between τi and ai holds by construction).
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4 Econometric Methodology

In this section, we describe our strategy for estimating the incomplete-information economy.

Building on the equivalence result in Theorem 1, our empirical approach formulates the

information structure directly in terms of a stochastic process for the information wedge

T̄t. While practical concerns lead us to adopt a specific parametric specification for T̄t, the

approach is essentially non-parametric regarding the underlying structure of information.

Since we do not have strong priors with regard to the precise channels through which agents

collect their information (and even less with regard to the distributional properties of the

noise terms associated with these channels), we believe that this is a natural starting point

for an empirical investigation.

The relevant structural parameters in our model are β, α, φy, φπ and the composite

parameter κ. We fix these parameters in our estimation procedure as they are only weakly

identified given the specification of T̄ adopted below. The discount factor β is set equal to

0.99, consistent with an average real return on assets of 4 percent per year. The production

parameter α is estimated from (1) via OLS, using the utilization-adjusted productivity series

from Fernald (2014) to measure at, yielding an estimate of 0.9. The Taylor rule coefficients

φy and φπ are set to 0.005 and 2, broadly consistent with the estimated parameter values

in Blanchard, L’Huillier and Lorenzoni (2013) and Smets and Wouters (2007). The Philips

curve coefficient κ is set equal to 0.025.11

As is common in the DSGE literature we restrict the stochastic process for T̄t to be

first-order auto-regressive, so

T̄t = ΛT̄t−1 + ωt,

where ωt is i.i.d. across time with zero mean and covariance matrix Ψ. In our baseline

setting, we consider matrices Ψ that are rank two as a third independent innovation to ωt

is found to only marginally improve the fit and is statistically insignificant. To allow agents

to be potentially unaware of productivity shocks, we also allow ωt to correlated with the

productivity innovations εt. The joint covariance matrix is denoted Ψ̃ = Var[(ωt, εt)]. In

total, this gives us 18 parameters that are to be estimated, γ ≡ {vec(Λ), vech(Ψ̃)}.
Let Γ denote the set of parameters consistent with the implementability conditions given

in (20)–(23) for h̄ = 32. We estimate the model parameters γ using the generalized method

of moments (GMM) to minimize the distance between the model’s covariance structure and

11The value is based on an output elasticity of the flex-price target ξ set equal to 0.15 as suggested by
Woodford (2011, Ch. 3) and a value for λ equal to 2/3 implying an average price duration of 3 quarters.
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the data, subject to γ ∈ Γ.12 Let

Ω̃T = vech{Var[(x̃dt , . . . , x̃
d
t−k)]},

denote the empirical auto-covariance matrix of quarterly, frequency-filtered data x̃dt on US real

output, inflation, the FED funds rate and employment, where auto-covariances are computed

for up to k = 8 quarters.13 For the filtering, we use the Baxter and King (1999) approximate

high-pass filter with a truncation horizon of 32 quarters; i.e., x̃dt = HP32(xdt ) where xdt is the

data-equivalent to xt = (ŷt, πt, it, nt).
14 Our estimator is then given by

γ̂ = argmin
γ∈Γ

(Ω̃T − Ω̃(γ))′W (Ω̃T − Ω̃(γ)), (24)

where Ω̃(γ) is the model analogue to Ω̃T and W is a weighting matrix set to an estimate of[
Var{T 1/2Ω̃T}

]−1
(see Appendix B.2 for details). To avoid biasing our results by a mismatch

between model and data frequencies as discussed in Gorodnichenko and Ng (2009), we com-

pute Ω̃(γ) by applying the same filtering procedure to the model as we do to the data. In Ap-

pendix B.1, we provide a closed-form transformation from Ω ≡ vech{Var[(dxt, . . . , dxt−K)]}
to Ω̃ = ΞΩ for a constant matrix Ξ and K = k + 2τ̄ . Using the transformation, we can

equivalently express (24) as

γ̂ = argmin
γ∈Γ

(ΩT − Ω(γ))′W̃ (ΩT − Ω(γ)), (25)

where now the unfiltered model is estimated (in first differences) on unfiltered data and the

filtering is achieved by replacing W with W̃ ≡ Ξ′WΞ. Using (25) in place of (24), estimation

becomes straightforward as the mapping from γ to Ω(γ) is available in closed form.

All confidence intervals and hypothesis tests are based on a bootstrapped distribution,

{γ̂b}Bb=1, with B = 500 replications (and analog distributions for the benchmark models

discussed below). As bootstrap data generating process we use a VAR(10) estimated on dxt.

In each sample b, we first construct Wb according to the steps described in Appendix B.2,

and then use (25) to estimate γ̂b where the target moments (Ωb−Ω(γ)) are recentered about

their population mean to adjust for overidentification.

12As for our parametric specification for T̄t, (22)–(20) can not hold exactly unless T̄t = 0 for all t, we allow
for a small numerical deviation. The estimated model satisfies all orthogonality conditions within a tolerance
of 2 · 10−6.

13All data are defined quarterly and ranges from 1960 to 2012. Inflation is defined as the log-difference in
the GDP deflator and employment is given by hours worked in the non-farm sector.

14The Baxter and King (1999) filter requires specification of a maximal lag-length τ̄ for the approximation.
We set τ̄ to their recommended value of 12.
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5 Empirical Results

In this section we explore the properties of the estimated model and assess its ability to

account for business cycle comovements in the data. A full listing of the estimated parameters

values is given in Table 5 in the appendix.

5.1 Predicted Moments

We begin by assessing the empirical performance of the estimated model. Figure 1 compares

the predicted model moments with the targeted data moments. The dashed black lines show

the empirical covariance structure Ω̃T along with 90 percent confidence intervals (depicted

by the shaded areas). The solid blue lines show the corresponding moments predicted by the

model. Each row i and column j in the table of plots shows the covariances between x̃it and

x̃jt−k with lags k ∈ {0, 1, . . . , 8} depicted on the horizontal axis.

It is evident that the estimated model does a remarkable job at capturing the auto-

covariance structure of the four time series. In particular, the model captures the positive

contemporaneous comovement of output, hours, and inflation visible in the data, which is

typically difficult for productivity-driven models to accommodate. The estimated model

also does an excellent job at capturing the autocorrelation structure found in the data, in

particular the rising profile of inflation’s comovement with lagged GDP (second row, first

column), as well as the falling autocorrelations of GDP, inflation, and hours (along the

diagonal).

A test of the model’s over-identifying restrictions confirms the visual impressions. Based

on the estimated distance to the data (J = 26.0), we do not reject the validity of the model

at a p-value of 24.4 percent (obtained via the bootstrap described above). In comparison, the

full-information model where we restrict γ to satisfy Λ = Ψ = 0 is clearly unable to account

for the empirical covariance structure.15 Concordantly, the parameter restriction Λ = Ψ = 0

is rejected at a p-value of less than 0.01 percent.

Essential for the empirical performance of the model is that the estimated information-

wedges can be correlated across time and among each other (see Table 1). In particular,

there is a strong negative correlation between τ ft and both τht and τ bt . While most business

cycle models generate shocks that are correlated across time, it is typically difficult for full-

15With the exception of output, all targeted moments are zero under the full-information model since
potential output is constant when productivity follows a random walk process. We also explored whether a
more flexible process for at that allows for fluctuations in the natural rate can improve the performance of
the full-information model, but rejected this possibility as the predicted comovement patterns are at odds
with the empirical covariance structure.
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Figure 1: Business cycle comovements in the data and predicted by the estimated model. Note.—Dashed
black lines show the empirical covariance structure Ω̃T together with 90 percent confidence intervals depicted
by the shaded areas. Solid blue lines show the corresponding model moments Ω̃(γ̂). Each row i and column
j in the table shows the covariances between x̃it and x̃jt−k with lags k ∈ {0, 1, . . . , 8} depicted on the x-axis.

information models with structurally uncorrelated shocks to generate perturbations that are

correlated across equations. By contrast, the incomplete-information wedges are naturally

correlated, both because information can be correlated across different types of agents and

because the objectives (3), (9) and (10) are linked through strategic interdependences. To see

how strategic links may give rise to a correlation in the wedges, suppose, e.g., that ŷt increases

due to optimistic households (an increase in τht ). If they were fully aware of household’s

optimism, firms and the monetary authority would optimally increase, respectively, prices

and the interest rate. When incompletely aware of the change in household expectations,

firms and the central bank underreact, leading to negative movements in τ bt and τ ft . In

Section 6.2, we demonstrate that the correlation patterns in Table 1 can indeed be accounted

for by an imperfect awareness of one another’s errors.
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Table 1: Correlation structure of estimated information wedges

Contemporaneous correlation

Standard

deviation

First-order

autocorr.

with τ bt with τ ft with τht with εt

τ bt 0.43 0.28 1.00 · · ·
τ ft 0.32 0.44 -0.70 1.00 · ·
τht 0.69 0.81 0.06 -0.31 1.00 ·
εt 0.69 – -0.14 -0.02 -0.24 1.00

5.2 Properties of the estimated model

We now decompose the process of the estimated information-wedges to derive impulse re-

sponses to productivity innovations and different types of expectational shocks. The esti-

mated process for T̄t reflects two distinct channels through which incomplete information

affects the dynamics of the economy. First, agents may have incomplete information regard-

ing aggregate productivity, potentially modifying the economy’s response to productivity

shocks. Second, with incomplete information, agents can also make correlated errors that

introduce an independent source of business cycle fluctuations.

Under the assumption that productivity is exogenous to T̄t, we can separate out the two

roles of incomplete information by projecting T̄t on current and past productivity shocks εt.

We get

T̄t = A(L)εt + ut, (26)

where A(L)εt ≡ P[T̄t|εt, εt−1, . . . ] denotes the projection. The lag-polynomial A identifies

the average expectation errors in (11)–(13) due to agents being unaware about productivity

innovations. The remaining residuals, ut, identify purely expectational business cycle shocks.

Recall that under our baseline assumption, ut is driven by only two independent innova-

tions. Accordingly, let

ut = B1(L)η1,t +B2(L)η2,t, (27)

where B1 and B2 are lag-polynomials in nonnegative powers of L, and η1,t and η2,t are

orthogonal white-noise processes. As in the structural VAR literature, B1 and B2 cannot be

uniquely identified without additional identifying assumptions. To provide an economically

interesting interpretation of our shocks, we identify the first shock η1,t as the shock that

contributes most to unconditional output variation after controlling for the effect of the

technology shock. The second shock η2,t then captures the remaining movements in the

economy. The identification strategy is closely related to Uhlig’s (2003; 2004) approach of
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Table 2: Unconditional variance decomposition

GDP Inflation Hours Interest Rate

η1,t 0.90 0.15 0.78 0.36

η2,t 0.01 0.68 0.01 0.06

εt 0.09 0.18 0.22 0.58

Note.—Contributions are to unconditional variances in the frequency filtered model.

identifying shocks based on their contribution to some finite forecast error variance.

Table 2 shows the contributions of the three shocks to the unconditional variances of the

high-pass filtered model variables. While productivity contributes substantially to fluctua-

tions in interest rates, the majority of the fluctuations in output, inflation and employment

are accounted for by the expectational shocks η1,t and η2,t. Specifically, the first-ordered

expectational shock is the dominant driver of output and employment fluctuations, whereas

the second-ordered shock is the primary driver of inflation.

Impulse responses to productivity shocks The solid lines in Figure 2 represent the

responses of the estimated model to a one-standard-deviation innovation in productivity. The

shaded confidence bands are based on the 5 and 95 percentile response of the bootstrapped

distribution. The random walk assumption we have placed on productivity implies that

under full information, output would immediately jump to the new potential output level

(depicted by the dotted black line). As unanticipated permanent changes in potential output

have no effect on the output gap, there would be no responses in inflation, hours, and the

interest rate under full information.

With incomplete information, the responses are quite different. Output hardly moves

on impact and then only slowly adjust to its new potential level over a course of roughly

four years. The main cause of this slow response is a negative response in the household’s

information-wedge τht , reflecting slow learning of households about the change in productivity.

In contrast to τht , the responses in τ ft and τ bt are not significantly different from zero, so that

we cannot reject the hypothesis that firms and the monetary authority are perfectly aware of

the change in potential output when it hits the economy. As a result, firms and the monetary

authority are also approximately aware of the negative output gap induced by τht , so that

inflation and interest rates fall in response to the change in household demand. Overall, the

picture shows a delayed response to the productivity shock driven by slow adjustment of

households, consistent with the VAR-based evidence by Basu, Fernald and Kimball (2006).
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Figure 2: Impulse responses to a productivity shock. Note.—Responses are for a one-standard-deviation
shock to εt and are depicted in percentage deviations from the steady state. Shaded regions are bootstrapped
confidence intervals, bounded by the 5 and 95 percentiles of the bootstrapped distribution. Dotted black
lines give the full-information responses.

Impulse responses to expectational shocks Figure 3 shows impulse response functions

to a one-standard-deviation shock in η1,t (the shock contributing most to the observed output

fluctuations). The propagation of the shock is mainly through a sharp and fairly persistent

surge in household optimism. The resulting increase in household demand leads to a joint

increase in output, inflation, interest rates, and employment. In terms of output, the shock

implies a peak response of approximately 1 percent and has a half-live of two years. The

responses in inflation and the interested rate are initially dampened due to a brief and com-

parably minor decline in τ ft . In Section 6.2 we demonstrate how this is in line with firms

being unaware at first about the optimism of households. As firms learn about the presence

of the household error, their responses converge to the full-information response, inducing an

overall hump-shaped pattern in prices. Throughout, the bank-wedge τ bt is economically and

statistically insignificant so that interest rates are set as if the monetary authority is per-

fectly informed about the household error τht . Finally, because productivity did not change,

the response in employment mirrors the response in output, corresponding to a significant

decrease in the labor wedge.

We now turn to the second expectational shock η2,t. Figure 4 gives the impulse responses.

22



4 8 12 16

0

0.5

1

y

4 8 12 16
−0.05

0

0.05

0.1

0.15

π

4 8 12 16

0

0.1

0.2

i

4 8 12 16
−0.5

0

0.5

1

1.5

n

4 8 12 16

0

1

2

τh

4 8 12 16
−0.3

−0.2

−0.1

0

0.1

τf

4 8 12 16

−0.1

0

0.1

τ b

4 8 12 16
−1

−0.5

0

0.5

1

a

Figure 3: Impulse responses to an expectational shock in η1,t. Note.—Responses are for a one-standard-
deviation shock to η1,t and are depicted in percentage deviations from the steady state. Shaded regions are
bootstrapped confidence intervals, bounded by the 5 and 95 percentiles of the bootstrapped distribution.

The dominant driver of this shock is an expectational shock to firms yielding a sharp drop in

inflation. The responses in output and interest rates are, by contrast, not significant. This is

because the impact of τ ft on the optimal consumption and interest targets are almost exactly

offset by corresponding responses in τht and τ bt , suggesting that households and the monetary

authority are unaware of the shock to firms’ expectations. A possible factor explaining this is

the short-lived nature of the expectation-error made by firms, which has a half-life of less than

one quarter and cedes to be statistically significant within two quarters, making it difficult

for households and the monetary authority to learn about the firms’ error in time.

6 Informational Primitives

In this section, we explore what the primal economy can teach us about the informational

primitives in our model. We proceed in two steps. First, we use our estimates to test for

the presence of various aggregate statistics in the information sets of agents. Second, we

argue for a particular narrative of information transmission in the economy and demonstrate

how, using the narrative, the estimated information-wedges can be implemented with a fully

parametric information structure.
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Figure 4: Impulse responses to an expectational shock in η2,t. Note.—Responses are for a one-standard-
deviation shock to η2,t and are depicted in percentage deviations from the steady state. Shaded regions are
bootstrapped confidence intervals, bounded by the 5 and 95 percentiles of the bootstrapped distribution.

6.1 Knowledge of aggregate conditions

Figure 5 reports the (auto) correlation coefficients of the information wedges vis-à-vis output

growth, inflation, the Federal funds rate and productivity growth. The shaded regions cor-

respond to 90 percent confidence intervals. Since informational errors must be orthogonal to

variables in the corresponding information set, these plots indicate what variables may and

may not be observed by agents populating our estimated economy. By design the monetary

authority is aware of the prevailing interest rate so that τ bt is uncorrelated with it at all lags.

Since the correlation between τ bt and (dyt, dat) is statistically insignificant at all lags, we

find that the monetary authority is also likely to be aware of contemporaneous output and

productivity growth. By contrast, our test rejects that the monetary authority is aware of

inflation within a 1-year horizon. Consistent with a lack of reliable real-time inflation statis-

tics, the correlation is largest for current-quarter inflation and quickly drops to economically

insignificant levels as data becomes available over the course of one year.

In the private sector, our test suggests that firms are unaware of aggregate demand within

a 1-year horizon. With this exception, we cannot reject orthogonality of the firms’ information

wedges τ fi,t with respect to any of the aggregate statistics, indicating again that including

these variables in the information of firms is consistent with an informational account of the
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Figure 5: Correlation between information-wedges and aggregate statistics. Note.—The plot shows the
(auto) correlation coefficients of the estimated information-wedges vis-à-vis output growth, inflation, the fed
funds rate and productivity growth. The order of the autocorrelation is on the x-axis. Shaded areas depict
90 percent confidence intervals.

business cycle. In stark contrast, the households’ information wedges significantly violate

orthogonality with respect to all aggregate statistics at horizons of up to 2 years. While firms

and the monetary authority have a relative good understanding of the aggregate state of the

economy, our results thus suggest that households are generally unaware of contemporaneous

economic conditions. The results are in line with forecast-based evidence which finds that

households appear to be less informed than other agents in the economy (e.g., Carroll, 2003).

6.2 Interpretation and implementation

There are in general many information structures implementing a given process for T̄t. Our

description of the estimated economy above already hints at a particular narrative, in which

the two expectational shocks η1,t and η2,t reflect intrinsic shocks to households’ and firms’

expectations, respectively. We now formalize this narrative and demonstrate how it can be

implemented by an appropriate choice of information structure. We proceed in two steps.

First, we develop the narrative by taking a stand on the origin of the estimated expectation

errors inherent in T̄t. This allows us to interpret the estimated equilibrium expectations,

which are about endogenous objectives, in terms of expectations regarding certain exogenous
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fundamentals. Second, we demonstrate how the expectation dynamics that we develop in

the first step can be implemented by a particular information structure and characterize the

island-specific noises needed to support them.

To streamline the narrative, our implementation focuses on the case where εt is perfectly

known by firms, (εt, η1,t) is perfectly known by the monetary authority, and η2,t is fully

unknown to households and the monetary authority. In addition, we truncate the response

of τ ft+j to η1,t for j ≥ 8 at zero to prevent overshooting of firms expectations in response

to the household sentiment shock. All these modifications are within the confidence set of

our original estimate. Figure 8 in the appendix shows the implemented impulse response

functions in comparison to the original ones.

Interpreting the primal economy From (26) and (27), the aggregate wedges are given

by

τmt = Am(L)εt +Bm
1 (L)η1,t +Bm

2 (L)η2,t,

where for m ∈ {b, f, h}, Am, Bm
1 and Bm

2 are lag-polynomials defined by the correspond-

ing rows of A, B1, and B2. In the narrative that we develop, we interpret Bh
1 (L)η1,t and

Bf
2 (L)η2,t as intrinsic fluctuations in household and firms expectations, driven by the “senti-

ment” shocks η1,t and η2,t. By contrast, we interpret all remainder fluctuations in T̄t, defined

by {Am}m∈{b,f,h}, {Bm
1 }m∈{b,f} and {Bm

2 }m∈{b,h}, as gradual learning on the part of (other)

agents about these sentiments and aggregate productivity. According to this narrative, the

economy is thus driven by two sentiment shocks and a shock to aggregate productivity,

whereas the estimated comovement between τht , τ ft , τ bt and εt is accounted for by agent’s

being imperfectly aware of one another’s errors.

The dynamics of the sentiments are evident from the impulse response of τht to a shock

in η1,t as seen in Figure 3 and the response of τ ft to a shock in η2,t as seen in Figure 4.

To see how we can interpret the remaining fluctuations in T̄t as gradual learning, consider

the response in the average firms’ error τ ft to the household sentiment shock η1,t, given by

Bf
1 (L)η1,t. Our approach attributes Bf

1 (L) to imperfect information among firms regarding

η1,t. Let {πj} denote the projection coefficients of inflation πt onto {η1,t−j} as estimated

in the primal economy, and analogously let {π∗j} denote the projection coefficients of firms’

optimal response (πt − τ ft ) onto {η1,t−j}. Using the definition of the aggregate wedge, the

projection coefficients must satisfy

πjη1,t−j = π∗j Ē[η1,t−j|Ifi,t],
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Figure 6: Expectation dynamics to the three model shocks.

where Ē[·|Ifi,t] denotes average expectations across firms.16 Note that there is no uncertainty

about the projection coefficients {π∗j}. Intuitively, in equilibrium, firms understand how their

objective is affected by a shock to household sentiments, taking into account the equilibrium

response of households, the monetary authority and other firms. Their only uncertainty is

about the realization η1,t−j. Using the estimated inflation response {πj} to back out this

uncertainty, we get

Ē[η1,t−j|Ifi,t] =
πj
π∗j
η1,t−j. (28)

Analogous steps deliver the (average) expectations of households in response to productivity

shocks, whereas the remaining expectations are trivial given the modifications described

above.

Figure 6 displays the dynamics responses of agents’ (average) expectations to one-standard-

deviation innovations in εt, η1,t and η2,t. The left panel reports the responses to a productivity

shock. The expectations of firms and the monetary authority trace the response of produc-

tivity, reflecting an estimated response in inflation and interest rates that is consistent with

full information. By contrast, households learn about productivity shocks only gradually,

being on average aware of 7 percent of the realized innovation upon impact.

Next consider the responses to η1,t. Again, the estimated response in interest rates is

consistent with the monetary authority being perfectly aware of the intrinsic fluctuations in

household sentiments. The response of firms’ average expectations corresponds to an impact

awareness of 13 percent and is subsequently converging to the realized response in household

16Here we exploit that according to our interpretation, P{Ē[∆π∗i,t|Ifi,t]|η1,t−j} = 0; i.e., η1,t induces no
correlated errors across firms about the island-specific components in their target prices. In attributing
Bf1 (L)η1,t exclusively to incomplete information regarding η1,t, we also implicitly assume that learning is
independent across innovations η1,t, η1,t−1 and so on. In our implementation below, we provide a specific
signal structure for which this is the case.
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sentiments over the course of 8 quarters. Finally, the right panel depicts the response of firm

sentiments to η2,t. As discussed before, the estimated responses in yt and it are consistent with

households and the monetary authority being fully ignorant of the change in firm sentiments.

Implementation We now demonstrate a specific information structure that implements

the expectations shown in Figure 6 in the incomplete-information economy. To implement

the expectations of the monetary authority, it suffices to set Ibt = {εt−s, η1,t−s}s≥0∪Θb,t. The

presence of εt and η1,t in the information set provides full information about productivity and

household sentiments, whereas none of the available signals provides any useful information

about η2,t.
17

To implement households’ and firms’ expectations, we need to design an information

structure that on the one hand gives rise to intrinsic sentiment fluctuations and on the other

hand induces gradual learning in line with the characterization above. In order to do this, we

again use projections to isolate fluctuations due to each agent type’s own sentiment shock,

and then provide agents with noisy signals about remaining sources of aggregate volatility.

As the implementation strategy is the same for firms and households, we only demonstrate

it for firms.

Define

π∗i,t ≡ Et[κ(ŷi,t + µi,t) + βπ∗i,t+1]

as the objective of firms in island i at date t, and let

π̊∗i,t ≡ π∗i,t − P[π∗i,t|η1,t, η1,t−1, . . . ]− P[π∗i,t|εt, εt−1, . . . ]

be the objective after projecting out all variations driven by η1,t and εt. By construction,

πi,t = π∗i,t + τi,t, which given our decomposition can be rewritten as

πi,t = E[̊π∗i,t|Ifi,t] + E
{
P[π∗i,t|η1,t, η1,t−1, . . . ]|Ifi,t

}
+ E

{
P[π∗i,t|εt, εt−1, . . . ]|Ifi,t

}
. (29)

The first term in equation (29) above, π̊∗i,t, is the portion of inflation not accounted for

by firms’ mistaken forecasts of other agents’ beliefs, and will serve as the basis for our

implementation of firm sentiments. The second and third term in (29) accordingly capture

the learning dynamics of firms regarding household sentiments and aggregate productivity.

17While Θb,t contains information regarding the aggregate state of the economy with a lag of h̄ quarters,

this information is useless for the purpose of learning about (aggregate) firm sentiments, because τft is only
driven by innovations within a horizon of h̄ quarters.
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To implement the firm sentiment shock, define

τ̊i,t = E[̊π∗i,t|Ii,t]− π̊∗i,t

as the expectation error regarding π̊∗i,t. By construction, any distribution of τ̊i,t across islands

that satisfies ∫ 1

0

τ̊i,t di = Bf
2 (L)η2,t (30)

will implement the firm sentiments Bf
2 (L)η2,t. In order to implement such a {τ̊i,t}, we use

the precise logic of our proof to Theorem 1 and equip firms with a signal

ωi,t = π̊∗i,t + τ̊i,t.

As is demonstrated in the example in Section 3.2, this suffices to implement any desired

τ̊i,t as long as ωi,t ⊥ τ̊i,t and Ifi,t ⊥ τ̊i,t. Subject to these restrictions, we can construct a

particular process for τ̊i,t that satisfies (30) as long as there are sufficiently large local shocks

(see Appendix A.2 for details). The properties of the local shocks needed to support our

implementation strategy are further discussed below.

We are left to implement the learning dynamics regarding household sentiments and

productivity. Suppose Ifi,t = {at−s, ωi,t−s, χi,t}s≥0∪Θi,t. The presence of at in the information

set induces perfect information regarding productivity, whereas the signals {χi,t−s}s≥0 govern

learning about η1,t (by construction no other element in Ifi,t contains useful information about

η1,t). Let

χi,t ∼ N




η1,t

...

η1,t−h̄

 ,


σ2
f,0 0 0

0
. . . 0

0 0 σ2
f,h̄


 ,

where we assume that the signal noises are i.i.d. across islands. Then, assuming η1,t to be

Gaussian, we have that

Ē[ηt−j|Ifi,t] =

∑j
k=0 σ

−2
f,k

1 +
∑j

0 σ
−2
f,k

ηt−j, (31)

where Var{η1,t} has been normalized to unity. Equating equation (31) with (28), we find the

signal variances {σ2
f,j}h̄j=0 to implement the process for firm sentiments,

σ−2
f,j =

πj
π∗j − πj

σ−2
η,1 −

j−1∑
k=0

σ−2
f,k.
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Figure 7: Signal structure implementing the estimated learning dynamics. The left panel depicts the
standard deviation of the new signals available to households at time t regarding a productivity innovation
at time t− j. The right panel depicts the standard deviation of the new signals available to firms at time t
regarding an innovation in household sentiments at time t− j.

Figure 7 reports the standard deviations of the signals that implement the learning dy-

namics of firms regarding to η1,t and of households regarding to at. The latter are computed

following precisely the same steps as outlined for firms above. It can be seen that the newly

arriving signals are more precise over time, reflecting learning dynamics that converge to the

truth at a faster rate than the one implied where an independently but identical distributed

signals regarding past innovations becomes available at each date.

Volatility of islands-specific noise terms We now return to the question of what volatil-

ity for the idiosyncratic noise terms, {∆ai,t, zi,t, ν1
i,t, ν

2
i,t}, is required to implement the pro-

cesses for aggregate expectation described above. In practice, many different processes for

these shocks are able to support the estimated belief processes. For our implementation,

we treat these shocks as independent MA (32) processes that can be arbitrarily correlated

with the island-specific component of the information wedges (see the appendix for details).

We then search numerically for a feasible implementation of estimated belief processes that

minimizes the sum of unconditional variances of these shocks. Table 3 reports the correspond-

ing standard deviations for these shocks.18 While local conditions must exhibit substantial

volatility, the order of magnitude for these volatilities are on par with those of aggregate con-

ditions in the economy. The values also fall well within the plausible range for the volatility

of local conditions, which are often calibrated or estimated to be much larger.

18We also repeat the exercise for the originally estimated economy, yielding very similar numbers (reported
in Table 4 in the appendix).
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Table 3: Standard deviations of island-specific noise terms

Noise process ∆ai,t zi,t ν1
i,t ν2

i,t

Standard deviation 0.89 4.34 1.49 1.28

7 Summary

We have established the equivalence between a primal economy characterized by a set of

reduced-form wedges and the class of economies driven by incomplete information. Applying

our result, we have shown how to estimate a macroeconomic model with incomplete informa-

tion without parametric assumptions on information structures. Our approach is, at once,

straightforward to use and can be easily adapted to myriad contexts. We use the approach

to identify empirically relevant information-frictions. In the context of a new-Keynesian

model, our analysis points to incomplete information on the part of households as the most

important ingredient for explaining the data.
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A Mathematical appendix

A.1 Proof of Theorem 1

Consider any information-wedge τ ∈ T . Let (â, I∗) denote the corresponding expectation

target and full-information set contained in E , so that

y ≡ E[â|I∗] + τ (32)

defines the equilibrium “belief” implied by the primal economy. Also let Θ be the correspond-

ing minimal information requirement on I in the incomplete information economy. We want

to show that conditions (i) and (ii) are jointly necessary and sufficient for the construction

of some I ∈ Θ such that

E[â|I] = y. (33)

Necessity The necessity is immediate, since optimal inference requires that expectation er-

rors are orthogonal to variables in the information set and are unpredictable. E.g., combining

(32) and (33), implementation requires

τ = E[â|I]− E[â|I∗]. (34)

Taking expectations over (34) yields E[τ ] = 0. Similarly, postmultiplying (34) by Θ′ ⊆ I ⊆ I∗
gives E[τΘ′] = E[âΘ′|I]− E[âΘ′|I∗] and, hence, E[τΘ′] = 0.

Sufficiency We demonstrate sufficiency by construction. Let I = Θ. Notice that in

dynamic settings, the constructed information-set I is recursive whenever Θ is recursive (as

we are assuming in this paper). Recursivity of Θ thus ensures that E[â|I] is fully consistent

with the dynamic nature of agents’ belief process.

Let Θ̃ ≡ Θ \ {y}, where, by assumption, y ∈ Θ (see the discussion in the main text), and

let a ≡ E[â|I∗]. From the law of iterated expectations, we have E[â|I] = E[a|I] as I ⊆ I∗.
Projecting a onto (y, Θ̃) we thus have19

E[â|I] =
[
Σay ΣaΘ̃

] [Σyy ΣyΘ̃

Σ′
yΘ̃

ΣΘ̃Θ̃

]−1 [
y

Θ̃

]
,

19When the vector Θ contains co-linear variables, the proof follows after replacing Σ−1
ΘΘ with the generalized

inverse Σ†ΘΘ and using the standard properties of the projection matrix, ΣΘΘΣ†ΘΘ.
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where we use Σab as shorthand for Cov[a, b′]. Combining (32) with condition (ii) yields

Cov(a, y′) = Cov(y − τ, y′) = Cov(y, y′)

Cov(a, Θ̃′) = Cov(y − τ, Θ̃′) = Cov(y, Θ̃′).

Noting that [
Σyy ΣyΘ̃

]
=
[
I 0

] [Σyy ΣyΘ̃

Σ′
yΘ̃

ΣΘ̃Θ̃

]
,

we therefore get

E[â|I] =
[
I 0

] [y
Θ̃

]
= y.

As the proof applies to any τ ∈ T , we conclude that as long as conditions (i) and (ii) holds,

we can replicate T by including an exogenous signal a+ τ into each information set that has

the same distributional properties as the primal “belief” y. Moreover, because E(T ) is an

equilibrium in the primal economy, all equilibrium conditions in the incomplete-information

economy hold by construction, concluding the proof of the theorem.

A.2 Implementation of aggregate wedges

For the aggregate firm and household wedges τ ft and τht to be implementable, they must be

supported by a set of island-specific wedge processes {τ fi,t, τhi,t} that is consistent with the

additional orthogonality conditions imposed by the island-specific portion of Θi,t (orthogo-

nality to the aggregate portion is ensured by (20)–(23)). Exploiting the structure of the local

economy, the island-specific portion {ai,t, ci,t, pi,t, p̄i,t, ii,t, wi,t} is informationally equivalent to

Si,t ≡



dat

ŷt

πt

πt

it

θ−1dyt + πt


+



d∆ai,t

∆ci,t −∆ai,t

dν1
i,t

∆πi,t

ν2
i,t

dzi,t


,

where we use St and ∆Si,t to refer to the first (aggregate) and second (island-specific) term,

respectively. Similar, let ∆τmi,t ≡ τmi,t − τmt denote the island-specific component of firm and
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household wedges, m ∈ {f, h}. The orthogonality condition then requires

Cov{(∆τ fi,t,∆τhi,t),∆Si,t} = −Cov{(τ ft , τhi,t),St−j} for all j ≥ 0, (35)

where the right-hand side is pinned down by our estimation results. Notice that the only en-

dogenous terms in ∆Si,t are ∆ci,t and ∆πi,t. The dynamics of ∆ci,t and ∆πi,t are governed by

the stochastic properties of (∆τ fi,t,∆τ
h
i,t,∆ai,t, zi,t, ν

1
i,t, ν

2
i,t). Implementation of (τ ft , τ

h
t ) there-

fore essentially amounts to constructing a joint-process for (∆τ fi,t,∆τ
h
i,t,∆ai,t, zi,t, ν

1
i,t, ν

2
i,t),

which is consistent with (35).

In particular, the dynamics of the “∆-economy” are determined by the following set of

equilibrium conditions20:

∆ci,t = Et[b∆ci,t+1 −∆τhi,t+1 + dν1
i,t+1 − ν2

i,t] + τhi,t (36)

∆πi,t = Et[κ(∆ŷi,t + µi,t) + β(∆πi,t+1 −∆τ fi,t+1)] + τ fi,t (37)

where

µi,t =
α

ζ + 1

[
∆ci,t −∆ŷi,t −∆ai,t + ν1

i,t −∆p̄i,t
]

(38)

∆ŷi,t = θ(zi,t −∆p̄i,t)−∆ai,t (39)

∆p̄i,t = ∆p̄i,t−1 + ∆πi,t. (40)

Given a stochastic process for (∆τ fi,t,∆τ
h
i,t,∆ai,t, zi,t, ν

1
i,t, ν

2
i,t), the rational expectations equi-

librium to the system (36)–(40) can be solved using standard methods. For our implemen-

tation, we let (∆τ fi,t,∆τ
h
i,t,∆ai,t, zi,t, ν

1
i,t, ν

2
i,t) be a MA (32) process21, where we restrict inno-

vations so that the fundamentals (∆ai,t, zi,t, ν
1
i,t, ν

2
i,t) are independent. We then numerically

search for the process (∆τ fi,t,∆τ
h
i,t,∆ai,t, zi,t, ν

1
i,t, ν

2
i,t) that minimizes the sum of unconditional

variances of the exogenous noise terms ∆ai,t, zi,t, ν
1
i,t and ν2

i,t subject to the implementability

constraint (35). The resulting minimal volatilities are reported in Table 4.

In Table 3 in the main text, we also report minimal volatilities for the approximate

economy described in Section 6.2. The strategy to derive those volatilities is similar to the

20To keep the ∆-economy stationary, we assume that the financial distribution shock ν2
i,t is elastic with

respect to expected consumption. Let ν̃2
i,t denote the adjusted distribution shock. Then formally we assume

that ν̃2
i,t = ν2

i,t + (1− b)Et∆ci,t+1, the adjustments in consumption resulting from the second term are made
with a delay of 32 quarters in order to avoid interference with the learning problem. Throughout, we set
b = 0.9995.

21Notice that by construction the right-hand side of (35) evaluates to zero for all j ≥ 32, so that a MA
(32) process driving the ∆-economy is sufficient to implement the aggregate wedges.
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Table 4: Standard deviations of island-specific noise terms (original economy)

Noise process ∆ai,t zi,t ν1
i,t ν2

i,t

Standard deviation 1.03 4.22 1.52 1.91

one described above, with a slightly modified ∆-economy that for m ∈ {f, h} differentiates

between ∆τ̊mi,t and ∆τmi,t and adds additional implementability conditions corresponding to

ωmi,t ⊥ τ̊i,t as explained in the main text (for the purpose of the implementation, the gap

between ∆τ̊mi,t and ∆τmi,t is exogenously given by the noises in the signals χmi,t as specified by

(31)).

B Details of the econometric methodology

B.1 Applying the frequency-filter

Let

J =
(

Ω̃T − Ω̃(γ)
)′
W
(

Ω̃T − Ω̃(γ)
)

(41)

denote the penalty function in terms of BK-filtered moments, where as suggested by Gorod-

nichenko and Ng (2009) the filter is applied to both the data and the model. In this appendix,

we demonstrate how the penalty can be expressed in terms of the variance over unfiltered

moments, Ω ≡ vech
{

Var
(
dxtt−K

)}
, where d is the first-difference operator, and K ≡ k + 2τ̄

with τ̄ denoting the approximation horizon of the BK-filter.22 Specifically, for any positive-

semidefinite W we show that J in (41) is equivalent to

J = (ΩT − Ω(γ))′ W̃ (ΩT − Ω(γ)) , (42)

with W̃ = Ξ′WΞ replacing W .

The Baxter and King (1999) filtered version of xt is given by

x̃t =
τ̄∑

j=−τ̄

ajxt−j

where x̃t is stationary by construction. For the high-pass filter used in this paper, the weights

{aj} are given by

aj = ãj − θ, θ =
1

2τ̄ + 1

τ̄∑
j=−τ̄

ãj

22The first-difference filter is applied to ensure stationarity for variables that have a unit root.
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with

ã0 = 1− ω̄/π, α̃j 6=0 = − sin(jω̄)/(jπ), ω̄ = 2π/32.

To construct the filter-matrix Ξ, rewrite x̃t in terms of growth rates to get

x̃t =
τ̄∑

j=−τ̄

∞∑
l=0

ajdxt−j−l.

Noting that
∑τ̄

j=−τ̄ aj = 0, we can simplify to get

x̃t = Bdxt+τ̄t−τ̄−j

where

B = [b−τ̄ , . . . , bτ̄ ]⊗ In, (43)

n = 4 is the number of variables in x̃t, and bs =
∑s

j=−τ̄ αj.

Letting Lj define the backshift matrix

Lj =
[
0n(2τ̄+1),nj, In(2τ̄+1), 0n(2τ̄+1),n(k−j)

]
, (44)

we then have that

Σ̃j ≡ Cov(x̃, x̃t−j) = BL0ΣKL′jB
′,

or, equivalently,

vec(Σ̃j) = (BLj ⊗BL0) vec(ΣK).

To complete the construction of Ξ, define selector-matrices P0 and P1 such that

vech(Σ̃k) = P0


vec(Σ̃0)

...

vec(Σ̃k)


and

vec(ΣK) = P1vech(ΣK).

Stacking up vec(Σ̃j), we then get

Ω̃ = ΞΩ
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where

Ξ = P0


BL0 ⊗BL0

...

BLk ⊗BL0

P1 (45)

with B and Lj as in (43) and (44). Substitution in (41) yields (42).

B.2 Estimation of the optimal weighting matrix

Our estimation of

S ≡ Var
{
T 1/2

(
Ω̃T − Ω̃(γ0)

)}
= Var

{
T 1/2Ω̃T

}
is based on a bootstrap identical to the one described in the main text (with 5000 replications).

Let S̃ = Var{T 1/2Ω̃b} where the variance is across bootstrap samples with Ω̃b = ΞΩb being

the target moments in a given sample b ∈ {1, . . . , 5000}. It is well-known that estimations of

covariances of covariance structures are prone to small-sample bias due to the estimation of

fourth moments, which tend to correlate with the targeted covariance structure (e.g., Abowd

and Card 1989 and Altonji and Segal, 1996). In addition, we find that S̃ is near singular.

We follow Christiano, Trabandt and Walentin (2010) and dampen the off-diagonal elements

of S̃ relative to the diagonal to improve the small-sample efficiency of S̃. Specifically, let

S̃i,j denote the (i, j)-th block of S̃ corresponding to the cross-sample covariance between

Cov{dxt, dxt−i} and Cov{dxt, dxt−j}. We replace S̃ by S̃(ν1,ν2) where each block S̃
(ν1,ν2)
i,j in

S̃(ν1,ν2) is given by ςi,j(ν1)(M(ν2) ◦ S̃i,j) with

ςi,j =

(
1− |i− j|

k + 1

)ν1
, ν1 ≥ 0

and

M(ν2) = 1− ν2 + ν2In2 , 0 ≤ ν2 ≤ 1,

where ◦ is the element-wise (Hadamard) product and n = 4 is the number of elements in xt.

Intuitively, ν2 is a dampening factor applied to the off-diagonal elements within each S̃i,j block

and ν1 is a dampening applied to the covariance between different auto-covariance-blocks that

is increasing in |i− j|. For ν1 = ν2 = 0, the resulting matrix S̃(ν1,ν2) equals S̃. For ν1 →∞,

S̃(ν1,ν2) becomes a block-diagonal version of S̃, so that the GMM criterion does not depend

on the cross-block co-variation Cov {Cov [x̃t, x̃t−i] ,Cov [x̃t, x̃t−j]} for i 6= j. For ν2 = 1,

each block S̃
(ν1,ν2)
i,j becomes diagonal, so that the GMM criterion does not depend on the

cross-variable co-variation Var
{

Cov
[
x̃mt , x̃

n
t−i
]}

for any m 6= n. In either case, the criterion
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continues to make full use of all targeted moments Ω̃T . To have a consistent estimator of

S, we need that ν1 → 0 and ν2 → 0 as T → ∞, but do not restrict the small sample

behavior of ν1 and ν2. Our choice of ν1 and ν2 is aimed at maximizing the small sample

efficiency of S̃(ν1,ν2). Specifically, we set ν1 and ν2 to minimize the RMSE in a simulation

experiment where we generate time series of the length of our original data sample, treating

the bootstrap DGP described in the main text as the truth. The efficient estimator is given

by ν1 = 5 and ν2 = 0.5, which also suffices to make S̃(ν1,ν2) well-conditioned. Collecting, we

have W = [S̃(ν1,ν2)]−1 and W̃ = Ξ′[S̃(ν1,ν2)]−1Ξ.

C Additional tables and figures

Table 5: Parameters of the estimated VAR(1) process for the information wedges

Coefficient matrix Λ on lagged states Coefficient matrix R, where Ψ̃ = RR′


0.874 −1.171 −1.103

(0.730, 0.896) (−2.406, 1.538) (−2.406, 1.538)
0.006 0.803 0.222

(−0.005, 0.017) (0.436, 0.867) (−0.004, 0.338)
0.000 0.000 0.271

(−0.001, 0.001) (−0.172, 0.023) (0.039, 0.616)





2.049 0 1.325
(0.997, 2.442) (0.506, 1.882)
−0.165 −0.218 0.006

(−0.285,−0.020) (−0.252,−0.123) (−0.086, 0.079)
0.025 0.406 0.062

(−0.069, 0.160) (0.306, 0.447) (−0.082, 0.146)
0 0 −0.667

(−0.928,−0.395)


Note.—Numbers in parenthesis are 90% confidence intervals.
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Figure 8: Impulse responses in the estimated economy (blue) and the implemented learning economy (red).
The first row depicts impulse responses to εt, the second row, responses to η1,t, and the third row, responses
to η2,t.
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